1
|
Mishra P, Ahsan F, Mahmood T, Bano S, Shamim A, Ansari VA, Yadav J. Arbutin-A Hydroquinone Glycoside: Journey from Food Supplement to Cutting-Edge Medicine. Chin J Integr Med 2025:10.1007/s11655-025-3827-8. [PMID: 40080250 DOI: 10.1007/s11655-025-3827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 03/15/2025]
Affiliation(s)
- Pooja Mishra
- Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Farogh Ahsan
- Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India.
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Shahzadi Bano
- Department of Chemistry, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Arshiya Shamim
- Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Vaseem Ahamad Ansari
- Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Jyoti Yadav
- Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| |
Collapse
|
2
|
Marques D, Moura-Louro D, Silva IP, Matos S, Santos CND, Figueira I. Unlocking the potential of low-molecular-weight (Poly)phenol metabolites: Protectors at the blood-brain barrier frontier. Neurochem Int 2024; 179:105836. [PMID: 39151552 DOI: 10.1016/j.neuint.2024.105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Neurodegenerative diseases (NDDs) are an increasing group of chronic and progressive neurological disorders that ultimately lead to neuronal cell failure and death. Despite all efforts throughout decades, their burden on individuals and society still casts one of the most massive socioeconomic problems worldwide. The neuronal failure observed in NDDs results from an intricacy of events, mirroring disease complexity, ranging from protein aggregation, oxidative stress, (neuro)inflammation, and even blood-brain barrier (BBB) dysfunction, ultimately leading to cognitive and motor symptoms in patients. As a result of such complex pathobiology, to date, there are still no effective treatments to treat/halt NDDs progression. Fortunately, interest in the bioavailable low molecular weight (LMW) phenolic metabolites derived from the metabolism of dietary (poly)phenols has been rising due to their multitargeted potential in attenuating multiple NDDs hallmarks. Even if not highly BBB permeant, their relatively high concentrations in the bloodstream arising from the intake of (poly)phenol-rich diets make them ideal candidates to act within the vasculature and particularly at the level of BBB. In this review, we highlight the most recent - though still scarce - studies demonstrating LMW phenolic metabolites' ability to modulate BBB homeostasis, including the improvement of tight and adherens junctional proteins, as well as their power to decrease pro-inflammatory cytokine secretion and oxidative stress levels in vitro and in vivo. Specific BBB-permeant LMW phenolic metabolites, such as simple phenolic sulfates, have been emerging as strong BBB properties boosters, pleiotropic compounds capable of improving cell fitness under oxidative and pro-inflammatory conditions. Nevertheless, further studies should be pursued to obtain a holistic overview of the promising role of LMW phenolic metabolites in NDDs prevention and management to fully harness their true therapeutic potential.
Collapse
Affiliation(s)
- Daniela Marques
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Diogo Moura-Louro
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Inês P Silva
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Sara Matos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Apartado 12, Oeiras, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.
| |
Collapse
|
3
|
Huang S, He X, Huang C, He W, Zhao H, Dai J, Xu G. Thrombin-targeted screening of anticoagulant active components from Polygonum amplexicaule D. Don var. sinense Forb by affinity ultrafiltration coupled with UPLC-Q-TOF-MS. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1112-1122. [PMID: 38500381 DOI: 10.1002/pca.3346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Polygonum amplexicaule D. Don var. sinense Forb (PAF), a medicinal plant, has the effect of promoting blood circulation and removing blood stasis. However, the active compounds and targets of its anticoagulant effect are still unclear. OBJECTIVES This study aims to establish an effective reversely thrombin-targeted screening method for anticoagulant active components in PAF by affinity ultrafiltration (AUF) coupled with ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectroscopy (UPLC-Q-TOF-MS). METHODS Different polar parts of PAF were screened for potential thrombin ligands by AUF-HPLC and identified by UPLC-Q-TOF-MS. After studying the affinity between ligands and thrombin by molecular docking, the antithrombotic activity of ligands was detected in vivo by zebrafish thrombus model, and in vitro by chromogenic substrate method. The mechanism of such ligands on thrombin was further studied by coagulation factor assay. RESULTS Eleven potential thrombin ligands from PAF were screened by the AUF-UPLC-Q-TOF-MS method, and two compounds (butyl gallate and β-sitosterol) with significant anticoagulant activity were discovered via in vitro and in vivo activity testing. CONCLUSION A method system based on AUF-UPLC-Q-TOF-MS, molecular docking and in vivo and in vitro experiments also provided a powerful tool for further exploration of anticoagulant active components in PAF.
Collapse
Affiliation(s)
- Shiyi Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xiangchang He
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chencun Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Weihe He
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hongqing Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jie Dai
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Guangming Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Nie Z, Hu C, Miao H, Wu F. Electroacupuncture protects against the striatum of ischemia stroke by inhibiting the HMGB1/RAGE/p-JNK signaling pathways. J Chem Neuroanat 2024; 136:102376. [PMID: 38123001 DOI: 10.1016/j.jchemneu.2023.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
The striatum (Str) is injured 20 min after permanent ischemic stroke, leading to neurological deficits. Here, we aimed to explore the effect of electroacupuncture (EA) on ischemic stroke and elucidate the possible underlying mechanism. Rat permanent middle cerebral artery occlusion (pMCAO) model, EA treatment, sham-EA (SEA) treatment, beam-balance test, hematoxylin and eosin (HE) staining, Nissl staining, immunofluorescence staining, and Western blot were used to investigate the role of EA in pMCAO. The results showed that balance ability and motor coordination were obviously injured after pMCAO. EA improved balance ability and motor coordination in pMCAO rats. EA reduced striatal injury by reducing the expression of high-mobility group box 1(HMGB1)/receptor for advanced glycation end products (RAGE)/phosphorylated C-Jun N-terminal kinase (p-JNK), whereas SEA did not. Thus, EA plays a neuroprotective role during pMCAO injury, which may be related to the inhibition of HMGB1/RAGE/p-JNK expression.
Collapse
Affiliation(s)
- Zeyin Nie
- Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Chenying Hu
- Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Huachun Miao
- Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Feng Wu
- Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, Anhui, China.
| |
Collapse
|
5
|
Jiang J, Qi T, Li L, Pan Y, Huang L, Zhu L, Zhang D, Ma X, Qin Y. MRPS9-Mediated Regulation of the PI3K/Akt/mTOR Pathway Inhibits Neuron Apoptosis and Protects Ischemic Stroke. J Mol Neurosci 2024; 74:23. [PMID: 38381220 DOI: 10.1007/s12031-024-02197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Neuronal apoptosis is crucial in the pathophysiology of ischemic stroke (IS), albeit its underly24ing mechanism remaining elusive. Investigating the mechanism of neuronal apoptosis in the context of IS holds substantial clinical value for enhancing the prognosis of IS patients. Notably, the MRPS9 gene plays a pivotal role in regulating mitochondrial function and maintaining structural integrity. Utilizing bioinformatic tactics and the extant gene expression data related to IS, we conducted differential analysis and weighted correlation network analysis (WGCNA) to select important modules. Subsequent gene interaction analysis via the STRING website facilitated the identification of the key gene-mitochondrial ribosomal protein S9 (MRPS9)-that affects the progression of IS. Moreover, possible downstream signaling pathways, namely PI3K/Akt/mTOR, were elucidated via Kyoto Encyclopedia of Gene and Genomes (KEGG) and Gene Ontology (GO) pathway analysis. Experimental models were established utilizing oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro and middle cerebral artery occlusion/reperfusion (MCAO/R) in mice. Changes in gene and protein expression, as well as cell proliferation and apoptosis, were monitored through qPCR, WB, CCK8, and flow cytometry. An OGD/R cell model was further employed to investigate the role of MRPS9 in IS post transfusion of MRPS9 overexpression plasmids into cells. Further studies were conducted by transfecting overexpressed cells with PI3K/Akt/mTOR signaling pathway inhibitor LY294002 to unveil the mechanism of MRPS9 in IS. Bioinformatic analysis revealed a significant underexpression of MRPS9 in ischemic stroke patients. Correspondingly, in vitro experiments with HN cells subjected to OGD/R treatment demonstrated a marked reduction in MRPS9 expression, accompanied by a decline in cell viability, and an increase cell apoptosis. Notably, the overexpression of MRPS9 mitigated the OGD/R-induced decrease in cell viability and augmentation of apoptosis. In animal models, MRPS9 expression was significantly lower in the MCAO/R group compared to the sham surgery group. Further, the KEGG pathway analysis associated MRPS9 expression with the PI3K/Akt/mTOR signaling pathway. In cells treated with the specific PI3K/Akt/mTOR inhibitor LY294002, phosphorylation levels of Akt and mTOR were decreased, cell viability decreased, and apoptosis increased compared to the MRPS9 overexpression group. These findings collectively indicate that MRPS9 overexpression inhibits PI3K/Akt/mTOR pathway activation, thereby protecting neurons from apoptosis and impeding IS progression. However, the PI3K/Akt/mTOR inhibitor LY294002 is capable of counteracting the protective effect of MRPS9 overexpression on neuronal apoptosis and IS. Our observations underscore the potential protective role of MRPS9 in modulating neuronal apoptosis and in attenuating the pathophysiological developments associated with IS. This is achieved through the regulation of the PI3K/Akt/mTOR pathway. These insights forge new perspectives and propose novel targets for the strategic diagnosis and treatment of IS.
Collapse
Affiliation(s)
- Jina Jiang
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China
| | - Tingting Qi
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China
| | - Li Li
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China
| | - Yunzhi Pan
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China
| | - Lijuan Huang
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China
| | - Lijuan Zhu
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China
| | - Dongyang Zhang
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China
| | - Xiaoqing Ma
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China
| | - Yinghui Qin
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Tiefeng District, No. 3, Taishun Street, Qiqihar, China.
| |
Collapse
|
6
|
Yan J, Huang L, Feng J, Yang X. The Recent Applications of PLGA-Based Nanostructures for Ischemic Stroke. Pharmaceutics 2023; 15:2322. [PMID: 37765291 PMCID: PMC10535132 DOI: 10.3390/pharmaceutics15092322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
With the accelerated development of nanotechnology in recent years, nanomaterials have become increasingly prevalent in the medical field. The poly (lactic acid-glycolic acid) copolymer (PLGA) is one of the most commonly used biodegradable polymers. It is biocompatible and can be fabricated into various nanostructures, depending on requirements. Ischemic stroke is a common, disabling, and fatal illness that burdens society. There is a need for further improvement in the diagnosis and treatment of this disease. PLGA-based nanostructures can facilitate therapeutic compounds' passage through the physicochemical barrier. They further provide both sustained and controlled release of therapeutic compounds when loaded with drugs for the treatment of ischemic stroke. The clinical significance and potential of PLGA-based nanostructures can also be seen in their applications in cell transplantation and imaging diagnostics of ischemic stroke. This paper summarizes the synthesis and properties of PLGA and reviews in detail the recent applications of PLGA-based nanostructures for drug delivery, disease therapy, cell transplantation, and the imaging diagnosis of ischemic stroke.
Collapse
Affiliation(s)
- Jun Yan
- Department of Neurology, Fushun Central Hospital, Fushun 113000, China;
| | - Lei Huang
- Department of Cardiac Function, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xue Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
7
|
Ning K, Gao R. Icariin protects cerebral neural cells from ischemia‑reperfusion injury in an in vitro model by lowering ROS production and intracellular calcium concentration. Exp Ther Med 2023; 25:151. [PMID: 36911386 PMCID: PMC9995791 DOI: 10.3892/etm.2023.11849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Ischemia is one of the major causes of stroke. The present study investigated the protection of cultured neural cells by icariin (ICA) against ischemia-reperfusion (I/R) injury and possible mechanisms underlying the protection. Neural cells were isolated from neonatal rats and cultured in vitro. The cells were subjected to oxygen-glucose deprivation and reoxygenation (OGD-R) as an I/R mimic to generate I/R injury, and were post-OGD-R treated with ICA. Following the treatments, cell viability, apoptosis, reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and Ca2+ concentration were assessed using Cell Counting Kit-8 assay, flow cytometry, CyQUANT™ LDH Cytotoxicity Assay, H2DCFDA and SOD colorimetric activity kit. After OGD-R, considerable I/R injury was observed in the neural cells, as indicated by reduced cell viability, increased apoptosis and increased production of ROS and LDH (P<0.05). Cellular Ca2+ concentration was also increased, while SOD activity remained unchanged. Post-OGD-R ICA treatments increased cell viability up to 87.1% (P<0.05) and reduced apoptosis as low as 6.6% (P<0.05) in a concentration-dependent manner. The treatments also resulted in fewer ROS (P<0.05), lower extracellular LDH content (440.5 vs. 230.3 U/l; P<0.05) and reduced Ca2+ increase (P<0.05). These data suggest that ICA protects the neural cells from I/R injury in an in vitro model through antioxidation activity and maintaining cellular Ca2+ homeostasis. This function may be explored as a potential therapeutic strategy for ischemia-related diseases after further in vivo studies.
Collapse
Affiliation(s)
- Ke Ning
- Department of International Medicine, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Rong Gao
- Surgical Intensive Care Unit, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
8
|
Arbutin abrogates testicular ischemia/reperfusion injury in rats through repression of inflammation and ER stress. Tissue Cell 2023; 82:102056. [PMID: 36921493 DOI: 10.1016/j.tice.2023.102056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/30/2022] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
The aim of this study was to investigate the effects of arbutin (ARB) administration on oxidative stress, inflammation, endoplasmic reticulum (ER) stress and apoptosis in an experimental testicular torsion/detorsion (T/D)-induced testicular injury model for the first time. A total of 24 male Sprague-Dawley rats were divided into four groups with six rats in each group: sham control, T/D, T/D+ARB (50 mg/kg) and T/D+ARB (100 mg/kg). Torsion and detorsion times were applied as 4 h and 2 h, respectively. The levels of lipid peroxidation [malondialdehyde (MDA)] and oxidative stress [total oxidant status (TOS) and total antioxidant status (TAS)] in testicular tissues were determined using colorimetric methods. The levels of DNA damage [8-hydroxy-2'-deoxyguanosine (8-OHdG)], antioxidant system [superoxide dismutase (SOD) and catalase (CAT)], pro-inflammatory cytokines [high mobility group box 1 (HMGB1), nuclear factor kappa B protein 65 (NF-κB p65), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and myeloperoxidase (MPO)], ER stress [78-kDa glucose-regulated protein (GRP78), activating transcription factor 6 (ATF6) and CCAAT-enhancer-binding protein homologous protein (CHOP)] and apoptosis (caspase-3) markers in testicular tissues were determined using commercial enzyme-linked immunosorbent assay (ELISA) kits. Johnsen's testicle scoring system was used for histological evaluation. In the T/D group, it was determined that statistically significant increasing in the levels of oxidative stress, inflammation, ER stress and apoptosis compared with sham control group (p < 0.05). ARB administrations statistically significantly restored testicular I/R damage in a dose dependent manner (p < 0.05). In addition, it was determined that the data of histological examinations supported the biochemical results. Our findings support the hypothesis that ARB may be used as a protective agent against T/D-induced testicular damage.
Collapse
|
9
|
Le J, Xiao X, Zhang D, Feng Y, Wu Z, Mao Y, Mou C, Xie Y, Chen X, Liu H, Cui W. Neuroprotective Effects of an Edible Pigment Brilliant Blue FCF against Behavioral Abnormity in MCAO Rats. Pharmaceuticals (Basel) 2022; 15:ph15081018. [PMID: 36015166 PMCID: PMC9414705 DOI: 10.3390/ph15081018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke leads to hypoxia-induced neuronal death and behavioral abnormity, and is a major cause of death in the modern society. However, the treatments of this disease are limited. Brilliant Blue FCF (BBF) is an edible pigment used in the food industry that with multiple aromatic rings and sulfonic acid groups in its structure. BBF and its derivatives were proved to cross the blood-brain barrier and have advantages on the therapy of neuropsychiatric diseases. In this study, BBF, but not its derivatives, significantly ameliorated chemical hypoxia-induced cell death in HT22 hippocampal neuronal cell line. Moreover, protective effects of BBF were attributed to the inhibition of the extracellular regulated protein kinase (ERK) and glycogen synthase kinase-3β (GSK3β) pathways as evidenced by Western blotting analysis and specific inhibitors. Furthermore, BBF significantly reduced neurological and behavioral abnormity, and decreased brain infarct volume and cerebral edema induced by middle cerebral artery occlusion/reperfusion (MCAO) in rats. MCAO-induced increase of p-ERK in ischemic penumbra was reduced by BBF in rats. These results suggested that BBF prevented chemical hypoxia-induced otoxicity and MCAO-induced behavioral abnormity via the inhibition of the ERK and GSK3β pathways, indicating the potential use of BBF for treating ischemic stroke
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wei Cui
- Correspondence: ; Tel./Fax: +86-574-8760-9589
| |
Collapse
|