1
|
Wang L, Yuan X, Cai Q, Chen Y, Jia Z, Mai Q, Liu J, Liu Y. Mitochondria-targeting Cu 2-xSe-TPP with dual enzyme activity alleviates Alzheimer's disease by modulating oxidative stress. Colloids Surf B Biointerfaces 2024; 245:114244. [PMID: 39366108 DOI: 10.1016/j.colsurfb.2024.114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
Mitochondrial dysfunction in microglia has been implicated as a key pathogenesis of most neurodegenerative diseases including Alzheimer's disease (AD). Abnormal production of reactive oxygen species (ROS) and neuroinflammation caused by mitochondrial oxidative stress are important factors leading to neuronal death in AD. Herein, a "dual brake" strategy to synergistically halt mitochondrial dysfunction and neuroinflammation targeting mitochondria in microglia is proposed. To achieve this goal, (3-carboxypropyl) triphenyl-phosphonium bromide (TPP)-modified Cu2-xSe nanozymes (Cu2-xSe-TPP NPs) with dual enzyme-like activities was designed. Cu2-xSe-TPP NPs with superoxide dismutase-mimetic (SOD) and catalase-mimetic (CAT) activities can effectively scavenge ROS in the mitochondria of microglia and relieve mitochondrial oxidative stress. In vivo studies demonstrated that Cu2-xSe-TPP NPs can alleviate oxidative stress and promote neuroprotection in the hippocampus of AD model mice. In addition, Cu2-xSe-TPP NPs can regulate the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, promote Aβ phagocytosis and reshape the AD inflammatory microenvironment, thus effectively attenuating AD neuropathology and rescuing cognitive deficits in AD model mice. Taken together, this strategy preventing mitochondrial damage and remodeling the inflammatory microenvironment will provide a new perspective for AD therapy.
Collapse
Affiliation(s)
- Liqiang Wang
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen 518110, China; College of Chemistry and Materials Science of Jinan University, Guangzhou 510632, China
| | - Xiaoyu Yuan
- College of Chemistry and Materials Science of Jinan University, Guangzhou 510632, China
| | - Qianyu Cai
- College of Chemistry and Materials Science of Jinan University, Guangzhou 510632, China
| | - Yutong Chen
- College of Chemistry and Materials Science of Jinan University, Guangzhou 510632, China
| | - Zhi Jia
- College of Chemistry and Materials Science of Jinan University, Guangzhou 510632, China
| | - Qiongmei Mai
- College of Chemistry and Materials Science of Jinan University, Guangzhou 510632, China
| | - Jie Liu
- College of Chemistry and Materials Science of Jinan University, Guangzhou 510632, China.
| | - Yanan Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen 518110, China.
| |
Collapse
|
2
|
Retinasamy T, Lee ALY, Lee HS, Lee VLL, Shaikh MF, Yeong KY. Repurposing Anakinra for Alzheimer's Disease: The In Vitro and In Vivo Effects of Anakinra on LPS- and AC-Induced Neuroinflammation. ACS Chem Neurosci 2024; 15:3298-3310. [PMID: 39213521 DOI: 10.1021/acschemneuro.4c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease is a significant global health issue, and studies suggest that neuroinflammation plays a vital role in the advancement of this disease. In this study, anakinra has been shown to display a time- and concentration-dependent antineuroinflammatory effect. In the in vitro studies, it diminished the gene expressions of tumor necrosis factor-alpha (TNF-α) and nitric oxide (NO) synthase 2 stimulated by lipopolysaccharide (LPS). Anakinra also reduced the LPS-induced production of NO and reactive oxygen species. Thus, the hypertrophic state of LPS-activated BV2 microglial cells was reversed by anakinra. Furthermore, acrylamide (ACR)-induced activation of nuclear transcription factor-κB, TNF-α, and interleukin-1β was downregulated, while cAMP response element binding protein and brain-derived neurotrophic factor expression levels were markedly enhanced in ACR-treated zebrafish larvae. It was also observed that anakinra improved the uncoordinated swimming behaviors in ACR-exposed zebrafish larvae. Overall, anakinra demonstrated potential antineuroinflammatory and antioxidative effects.
Collapse
Affiliation(s)
- Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Amber Lot Yee Lee
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Hsien Siang Lee
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Vanessa Lin Lin Lee
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange 2795, NSW, Australia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
3
|
González-Flores D, Márquez A, Casimiro I. Oxidative Effects in Early Stages of Embryo Development Due to Alcohol Consumption. Int J Mol Sci 2024; 25:4100. [PMID: 38612908 PMCID: PMC11012856 DOI: 10.3390/ijms25074100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Alcohol, a widely consumed drug, exerts significant toxic effects on the human organism. This review focuses on its impact during fetal development, when it leads to a spectrum of disorders collectively termed Fetal Alcohol Spectrum Disorders (FASD). Children afflicted by FASD exhibit distinct clinical manifestations, including facial dysmorphism, delayed growth, and neurological and behavioral disorders. These behavioral issues encompass diminished intellectual capacity, memory impairment, and heightened impulsiveness. While the precise mechanisms underlying alcohol-induced fetal damage remain incompletely understood, research indicates a pivotal role for reactive oxygen species (ROS) that are released during alcohol metabolism, inciting inflammation at the cerebral level. Ethanol metabolism amplifies the generation of oxidant molecules, inducing through alterations in enzymatic and non-enzymatic systems responsible for cellular homeostasis. Alcohol consumption disrupts endogenous enzyme activity and fosters lipid peroxidation in consumers, potentially affecting the developing fetus. Addressing this concern, administration of metformin during the prenatal period, corresponding to the third trimester of human pregnancy, emerges as a potential therapeutic intervention for mitigating FASD. This proposed approach holds promise for ameliorating the adverse effects of alcohol exposure on fetal development and warrants further investigation.
Collapse
Affiliation(s)
- David González-Flores
- Department of Anatomy, Cell Biology and Zoology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Antonia Márquez
- Department of Anatomy, Cell Biology and Zoology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Ilda Casimiro
- Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain;
| |
Collapse
|
4
|
Hashemzadeh F, Derakhshandeh SH, Soori MM, Khedri F, Rajabi S. Bisphenol A adsorption using modified aloe vera leaf-wastes derived bio-sorbents from aqueous solution: kinetic, isotherm, and thermodynamic studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2031-2051. [PMID: 37158808 DOI: 10.1080/09603123.2023.2208536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Reactive-oxygen-species are produced more often in the body when bisphenol A (BPA), an endocrine-disrupting-substance, is present. In this investigation, bio-sorbents from an aqueous solution adapted from Aloe-vera were used to survey BPA removal. Aloe-vera leaf wastes were used to create activated carbon, which was then analyzed using Fourier transform infrared (FTIR), Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Zeta potential, and Brunauer-Emmett-Teller (BET) techniques. It was revealed that the adsorption process adheres to the Freundlich isotherm model with R2>0.96 and the pseudo-second-order kinetic model with R2>0.99 under ideal conditions (pH = 3, contact time = 45 min, concentration of BPA = 20 mg.L-1, and concentration of the adsorbent = 2 g.L-1). After five-cycle, the efficacy of removal was greater than 70%. The removal of phenolic-chemicals from industrial-effluent can be accomplished with the assistance of this adsorbent in a cost-effective and effective-approach.
Collapse
Affiliation(s)
- Farzad Hashemzadeh
- Water and Wastewater Research Center, Water Research Institute, Tehran, Iran
| | - Seyed Hamed Derakhshandeh
- Department of Chemical Engineering, Faculty of Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdi Soori
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Khedri
- Department of Laboratory Sciences, Faculty of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Rajabi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Mi L, Niu C, Chen J, Han F, Ji X. Development of an activatable far-red fluorescent probe for rapid visualization of hypochlorous acid in live cells and mice with neuroinflammation. Front Chem 2024; 12:1355238. [PMID: 38370093 PMCID: PMC10869478 DOI: 10.3389/fchem.2024.1355238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Recent investigations have suggested that abnormally elevated levels of HOCl may be tightly related to the severity of neuroinflammation. Although some successes have been achieved, fluorescent probes with far-red fluorescence emission and capable of detecting HOCl with high specificity in pure aqueous solution are still urgently needed. Herein, a responsive far-red fluorescent probe, DCI-H, has been constructed to monitor HOCl activity in vivo and in vitro. DCI-H could rapidly respond to HOCl within 120 s and had a low detection limit for HOCl of 1.5 nM. Importantly, physiologically common interfering species, except for HOCl, did not cause a change in the fluorescence intensity of DCI-HOCl at 655 nm. The results of confocal imaging demonstrated the ability of DCI-H to visualize endogenous HOCl produced by MPO-catalyzed H2O2/Cl- and LPS stimulation. With the assistance of DCI-H, upregulation of HOCl levels was observed in the mice model of LPS-induced neuroinflammation. Thus, we believed that DCI-H provided a valuable tool for HOCl detection and diagnosis of inflammation-related diseases.
Collapse
Affiliation(s)
- Long Mi
- Department of Radiology, Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Changhe Niu
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianqiang Chen
- Department of Radiology, Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Feng Han
- Department of Radiology, Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Xueying Ji
- Department of Radiology, Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| |
Collapse
|
6
|
Li WQ, Li JY, Zhang YF, Luo WQ, Dou Y, Yu S. Effect of Reactive Oxygen Scavenger N,N'-Dimethylthiourea (DMTU) on Seed Germination and Radicle Elongation of Maize. Int J Mol Sci 2023; 24:15557. [PMID: 37958543 PMCID: PMC10649595 DOI: 10.3390/ijms242115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Reactive oxygen species (ROS) are an important part of adaptation to biotic and abiotic stresses and regulate seed germination through positive or negative signaling. Seed adaptation to abiotic stress may be mediated by hydrogen peroxide (H2O2). The effects of the ROS scavenger N,N'-dimethylthiourea (DMTU) on maize seed germination through endogenous H2O2 regulation is unclear. In this study, we investigated the effects of different doses of DMTU on seed endogenous H2O2 and radicle development parameters using two maize varieties (ZD958 and DMY1). The inhibitory effect of DMTU on the germination rate and radicle growth was dose-dependent. The inhibitory effect of DMTU on radicle growth ceased after transferring maize seeds from DMTU to a water medium. Histochemical analyses showed that DMTU eliminated stable H2O2 accumulation in the radicle sheaths and radicles. The activity of antioxidant enzyme and the expression of antioxidant enzyme-related genes (ZmAPX2 and ZmCAT2) were reduced in maize seeds cultured with DMTU compared with normal culture conditions (0 mmol·dm-3 DMTU). We suggest the use of 200 mmol·dm-3 DMTU as an H2O2 scavenger to study the ROS equilibrium mechanisms during the germination of maize seeds, assisting in the future with the efficient development of plant growth regulators to enhance the seed germination performance of test maize varieties under abiotic stress.
Collapse
Affiliation(s)
- Wei-Qing Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
| | - Jia-Yu Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
| | - Yi-Fei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Wen-Qi Luo
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
| | - Yi Dou
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
| | - Song Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| |
Collapse
|
7
|
Rocha E, Chamoli M, Chinta SJ, Andersen JK, Wallis R, Bezard E, Goldberg M, Greenamyre T, Hirst W, Kuan WL, Kirik D, Niedernhofer L, Rappley I, Padmanabhan S, Trudeau LE, Spillantini M, Scott S, Studer L, Bellantuono I, Mortiboys H. Aging, Parkinson's Disease, and Models: What Are the Challenges? AGING BIOLOGY 2023; 1:e20230010. [PMID: 38978807 PMCID: PMC11230631 DOI: 10.59368/agingbio.20230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parkinson's disease (PD) is a chronic, neurodegenerative condition characterized by motor symptoms such as bradykinesia, rigidity, and tremor, alongside multiple nonmotor symptoms. The appearance of motor symptoms is linked to progressive dopaminergic neuron loss within the substantia nigra. PD incidence increases sharply with age, suggesting a strong association between mechanisms driving biological aging and the development and progression of PD. However, the role of aging in the pathogenesis of PD remains understudied. Numerous models of PD, including cell models, toxin-induced models, and genetic models in rodents and nonhuman primates (NHPs), reproduce different aspects of PD, but preclinical studies of PD rarely incorporate age as a factor. Studies using patient neurons derived from stem cells via reprogramming methods retain some aging features, but their characterization, particularly of aging markers and reproducibility of neuron type, is suboptimal. Investigation of age-related changes in PD using animal models indicates an association, but this is likely in conjunction with other disease drivers. The biggest barrier to drawing firm conclusions is that each model lacks full characterization and appropriate time-course assessments. There is a need to systematically investigate whether aging increases the susceptibility of mouse, rat, and NHP models to develop PD and understand the role of cell models. We propose that a significant investment in time and resources, together with the coordination and sharing of resources, knowledge, and data, is required to accelerate progress in understanding the role of biological aging in PD development and improve the reliability of models to test interventions.
Collapse
Affiliation(s)
- Emily Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Shankar J Chinta
- Buck Institute for Research on Aging, Novato, CA, USA
- Touro University California, College of Pharmacy, Vallejo, CA, USA
| | | | - Ruby Wallis
- The Healthy Lifespan Institute, Sheffield, United Kingdom
| | | | | | - Tim Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - We-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS), Lund, Sweden
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Irit Rappley
- Recursion pharmaceuticals, Salt Lake City, UT, USA
| | | | - Louis-Eric Trudeau
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Maria Spillantini
- Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Ilaria Bellantuono
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Heather Mortiboys
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Neuroscience, Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kindgom
| |
Collapse
|
8
|
Huang G, Qiu Y, Bi L, Wei H, Li G, Li Z, Ye P, Yang M, Shen Y, Liu H, Wang L, Jin H. PET Imaging of P2X7 Receptor (P2X7R) for Neuroinflammation with Improved Radiosynthesis of Tracer [18F]4A in Mice and Non-human Primates. ACS Chem Neurosci 2022; 13:3464-3476. [PMID: 36441909 DOI: 10.1021/acschemneuro.2c00506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The P2X7 receptor (P2X7R) is a key neuroinflammation target in a variety of neurodegenerative diseases. Improved radiosynthesis was developed according to the previously reported P2X7R antagonist GSK1482160. Biodistribution, radiometabolite, and dynamic positron emission tomography/computed tomography-magnetic resonance imaging (PET/CT-MRI) of the lipopolysaccharide (LPS) rat model and the transgenic mouse model of Alzheimer's disease (AD) revealed a stable, low uptake of [18F]4A in the brain of healthy rats but a higher standardized uptake value ratio (SUVR) in LPS-treated rats (1.316 ± 0.062, n = 3) than in sham (1.093 ± 0.029, n = 3). There were higher area under curves (AUCs) in the neocortex (25.12 ± 1.11 vs 18.94 ± 1.47), hippocampus (22.50 ± 3.41 vs 15.90 ± 1.59), and basal ganglia (22.26 ± 0.81 vs 15.32 ± 1.76) of AD mice (n = 3) than the controls (n = 3) (p < 0.05). Furthermore, 50 min dynamic PET in healthy nonhuman primates (NHPs) indicated [18F]4A could penetrate the blood-brain barrier (BBB). In conclusion, [18F]4A from this study is a potent P2X7R PET tracer that warrants further neuroinflammation quantification in human studies.
Collapse
Affiliation(s)
- Guolong Huang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| | - Yifan Qiu
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| | - Lei Bi
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Guocong Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Zhijun Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| | - Peizhen Ye
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| | - Min Yang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| | - Yanfang Shen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| | - Hao Liu
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Hongjun Jin
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| |
Collapse
|
9
|
Succinate Dehydrogenase Subunit C Contributes to Mycelial Growth and Development, Stress Response, and Virulence in the Insect Parasitic Fungus Beauveria bassiana. Microbiol Spectr 2022; 10:e0289122. [PMID: 35972281 PMCID: PMC9602434 DOI: 10.1128/spectrum.02891-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Succinate dehydrogenase (SDH), also known as respiratory chain complex II, plays a crucial role in energy production in which SdhC functions as an anchored subunit in the inner membrane of mitochondria. In this study, domain annotation analyses revealed that two SdhC domain-containing proteins were present in the filamentous insect-pathogenic fungus Beauveria bassiana, and they were named BbSdhC1 and BbSdhC2, respectively. Only BbSdhC1 localized to mitochondria; hence, this protein is considered the ortholog of SdhC in B. bassiana. Ablation of BbSdhC1 led to significantly reduced vegetative growth on various nutrients. The ΔBbsdhc1 mutant displayed the significantly reduced ATP synthesis and abnormal differentiation under aerial and submerged conditions. Notably, the BbSdhC1 loss resulted in enhanced intracellular levels of reactive oxygen species (ROS) and impaired growth of mycelia under oxidative stress. Finally, insect bioassays (via cuticle and intrahemocoel injection infection) revealed that disruption of BbSdhC1 significantly attenuated fungal virulence against the insect hosts. These findings indicate that BbSdhC1 contributes to vegetative growth, resistance to oxidative stress, differentiation, and virulence of B. bassiana due to its roles in energy generation and maintaining the homeostasis of the intracellular ROS levels. IMPORTANCE The electron transport chain (ETC) is critical for energy supply by mediating the electron flow along the mitochondrial membrane. Succinate dehydrogenase (SDH) is also known as complex II in the ETC, in which SdhC is a subunit anchored in mitochondrial membrane. However, the physiological roles of SdhC remain enigmatic in filamentous fungi. In filamentous insect-pathogenic fungus B. bassiana, SdhC is required for maintaining mitochondrial functionality, which is critical for fungal stress response, development, and pathogenicity. These findings improve our understanding of physiological mechanisms of ETC components involved in pathogenicity of the entomopathogenic fungi.
Collapse
|
10
|
Zhang D, Dong M, Song X, Qiao X, Yang Y, Yu S, Sun W, Wang L, Song L. ROS function as an inducer of autophagy to promote granulocyte proliferation in Pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104479. [PMID: 35764163 DOI: 10.1016/j.dci.2022.104479] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Hematopoiesis is the biological process to generate new blood cells in the living body and reactive oxygen species (ROS) contribute significantly to the regulation of haematopoietic cell homeostasis. In the present study, the involvement of ROS in the proliferation of haemocytes was examined in Pacific oyster Crassostrea gigas. The ROS content in haemocytes increased significantly after lipopolysaccharide (LPS) treatment, but decreased after the treatment with antioxidant N-Acetyl-L-cysteine (NAC, a scavenger of ROS). The percentage of 5-ethynyl-2'-deoxyuridine labeled (EdU+) granulocytes in total haemocytes significantly increased at 12 h (4.12-fold, p < 0.001) and 24 h (2.36-fold, p < 0.001) after LPS treatment, while decreased at 12 h (0.26-fold, p < 0.001) and 24 h (0.61-fold, p < 0.05) after NAC treatment, respectively. Meanwhile, the percentage of haemocytes with autophagosome positive signals significantly increased at 12 h (1.17-fold, p < 0.01) and 24 h (1.19-fold, p < 0.05) after LPS treatment, but significantly reduced at 12 h (0.41-fold, p < 0.001) and 24 h (0.28-fold, p < 0.001) after the NAC treatment, respectively. After ammonium chloride (NH4Cl) treatment, the percentage of haemocytes with autophagosome and EdU+ granulocytes significantly increased at 12 h, which was 1.27-fold (p < 0.01) and 1.70-fold (p < 0.01) of control group, respectively. These results collectively suggested that ROS produced after LPS treatment could act as an inducer for autophagy and involved in regulating the proliferation of some granulocytes in C. gigas.
Collapse
Affiliation(s)
- Dan Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Ying Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wending Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
11
|
García-Revilla J, Herrera AJ, de Pablos RM, Venero JL. Inflammatory Animal Models of Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S165-S182. [PMID: 35662128 PMCID: PMC9535574 DOI: 10.3233/jpd-213138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Accumulating evidence suggests that microglia and peripheral immune cells may play determinant roles in the pathogenesis of Parkinson’s disease (PD). Consequently, there is a need to take advantage of immune-related models of PD to study the potential contribution of microglia and peripheral immune cells to the degeneration of the nigrostriatal system and help develop potential therapies for PD. In this review, we have summarised the main PD immune models. From a historical perspective, we highlight first the main features of intranigral injections of different pro-inflammogens, including lipopolysaccharide (LPS), thrombin, neuromelanin, etc. The use of adenoviral vectors to promote microglia-specific overexpression of different molecules in the ventral mesencephalon, including α-synuclein, IL-1β, and TNF, are also presented and briefly discussed. Finally, we summarise different models associated with peripheral inflammation whose contribution to the pathogenesis of neurodegenerative diseases is now an outstanding question. Illustrative examples included systemic LPS administration and dextran sulfate sodium-induced colitis in rodents.
Collapse
Affiliation(s)
- Juan García-Revilla
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio J. Herrera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Rocío M. de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luis Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|