1
|
Cardoso NC, Sohn JMB, Raymundi AM, Santos MR, Prickaerts J, Gazarini L, Stern CAJ. Time-dependent fear memory generalization triggered by phosphodiesterase 5 inhibition during reconsolidation. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111274. [PMID: 39870136 DOI: 10.1016/j.pnpbp.2025.111274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Fear generalization, a lack of discrimination between safe and unsafe cues, is a hallmark of posttraumatic stress disorder. The phosphodiesterase 5 (PDE5) regulates the cyclic guanosine monophosphate (cGMP) pathway, which has been proposed to be involved in fear memory generalization. However, whether PDE5 activity underlies fear memory generalization remains unexplored. Considering the importance of retrieval-induced reconsolidation in memory maintenance, we aimed to investigate whether PDE5 inhibition during reconsolidation of recent fear memory affects generalization over time in adult male Wistar rats submitted to contextual fear conditioning. The PDE5 inhibition with vardenafil (VAR) 1 mg/kg i.p. during reconsolidation triggered a time-dependent fear generalization without affecting fear memory in the paired context. Fear generalization and impaired pattern separation appear to be interlinked. Likewise, an impairment of object pattern separation was observed in the VAR-treated group at the remote time point. These effects depended on memory retrieval and were restricted to the reconsolidation time window. A chemogenetic inhibition of the anterior cingulate cortex (ACC), a region involved in allocating remote memories and generalization, prevented the effects of VAR. Moreover, VAR infusion into the ACC (6 μg/0.2 μL) after retrieval also promoted fear generalization and impaired OPS in remote time point, suggesting that ACC underlies the behavioral outcomes of the treatment with VAR. In conclusion, our results suggest that inhibiting PDE5 during the reconsolidation of a recent fear memory recruits the activity of the ACC, triggering fear memory generalization and impairing object pattern separation over time.
Collapse
Affiliation(s)
| | | | - Ana Maria Raymundi
- Department of Pharmacology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Mateus Reis Santos
- Department of Pharmacology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Jos Prickaerts
- Peitho Translational, Drug Discovery and Development Consulting, Maastricht, the Netherlands
| | - Lucas Gazarini
- Federal University of Mato Grosso do Sul, Três Lagoas, Mato Grosso do Sul, Brazil
| | | |
Collapse
|
2
|
Jankovic T, Bogicevic M, Knezevic NN. The role of nitric oxide and hormone signaling in chronic stress, anxiety, depression and post-traumatic stress disorder. Mol Cell Endocrinol 2024; 590:112266. [PMID: 38718853 DOI: 10.1016/j.mce.2024.112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024]
Abstract
This paper provides a summary of the role of nitric oxide (NO) and hormones in the development of chronic stress, anxiety, depression, and post-traumatic stress disorder (PTSD). These mental health conditions are prevalent globally and involve complex molecular interactions. Although there is a significant amount of research and therapeutic options available, the underlying mechanisms of these disorders are still not fully understood. The primary pathophysiologic processes involved in chronic stress, anxiety, depression, and PTSD include dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, the intracellular influence of neuronal nitric oxide synthase (nNOS) on transcription factors, an inflammatory response with the formation of nitrergic oxidative species, and reduced serotonergic transmission in the dorsal raphe nucleus. Despite the extensive literature on this topic, there is a great need for further research to clarify the complexities inherent in these pathways, with the primary aim of improving psychiatric care.
Collapse
Affiliation(s)
- Tamara Jankovic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Marko Bogicevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Midwestern University Chicago College of Osteopathic Medicine, Downers Grove, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Department of Anesthesiology, University of Illinois, Chicago, IL, USA; Department of Surgery, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
3
|
Bai S, Ying ZM, Ying JK, Zhang QY, Lv YH, Wu ZM. Inhibition of 5-HT alleviates PTSD-like behaviors and promotes hippocampal neuroplasticity by modulating hippocampal autophagy in rats. J Neurophysiol 2024; 132:979-990. [PMID: 39110517 DOI: 10.1152/jn.00291.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
5-Hydroxytryptamine (5-HT) plays a substantial role in mitigating depression and anxiety. However, the potential effects of 5-HT against posttraumatic stress disorder (PTSD) and its underlying mechanisms remain unclear. Elevated plus maze test evaluates anxiety-related behaviors, and the open field test is used to assess overall activity levels and anxiety. Inflammatory cytokine levels were determined using ELISA. The levels of 5-HT and dopamine were measured using HPLC. mRNA and protein levels were examined by PCR and Western blot, respectively. Rats exposed to single prolonged stress (SPS) exhibited typical PTSD-like phenotypes, with decreased levels of 5-HT in the hippocampus and significant reductions in its downstream targets, brain-derived neurotrophic factor (BDNF) and TrkB. In addition, it was discovered that the autophagy signaling pathway might be involved in regulating hippocampal BDNF in rats exposed to SPS. Subsequent treatment with an intracerebral injection of sh-SERT significantly inhibited anxiety and cognitive dysfunction in rats. Moreover, sh-SERT treatment was observed to substantially reverse the increase in autophagy signaling protein expression and consequently improve the expression of BDNF and TrkB proteins, which had been reduced. The current study demonstrates that sh-SERT exhibits significant anti-PTSD effects, potentially mediated in part through the reduction of cellular autophagy to enhance hippocampal synaptic plasticity.NEW & NOTEWORTHY The study demonstrated that sh-SERT exhibits significant anti-posttraumatic stress disorder (PTSD) effects, potentially mediated in part through the reduction of cellular autophagy to enhance hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Shi Bai
- Department of Anatomy, School of Medicine, Taizhou University, Jiaojiang, China
| | - Zhong-Ming Ying
- Department of Neurology, Taizhou Integrated Traditional Chinese and Western Medicine Hospital, Wenling, China
| | - Jia-Kang Ying
- Department of Clinical Medicine, School of Medicine, Taizhou University, Jiaojiang, China
| | - Qin-Ying Zhang
- Department of Clinical Medicine, School of Medicine, Taizhou University, Jiaojiang, China
| | - Yu-Hang Lv
- Department of Clinical Medicine, School of Medicine, Taizhou University, Jiaojiang, China
| | - Zhong-Min Wu
- Department of Anatomy, School of Medicine, Taizhou University, Jiaojiang, China
| |
Collapse
|
4
|
On making (and turning adaptive to) maladaptive aversive memories in laboratory rodents. Neurosci Biobehav Rev 2023; 147:105101. [PMID: 36804263 DOI: 10.1016/j.neubiorev.2023.105101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Fear conditioning and avoidance tasks usually elicit adaptive aversive memories. Traumatic memories are more intense, generalized, inflexible, and resistant to attenuation via extinction- and reconsolidation-based strategies. Inducing and assessing these dysfunctional, maladaptive features in the laboratory are crucial to interrogating posttraumatic stress disorder's neurobiology and exploring innovative treatments. Here we analyze over 350 studies addressing this question in adult rats and mice. There is a growing interest in modeling several qualitative and quantitative memory changes by exposing already stressed animals to freezing- and avoidance-related tests or using a relatively high aversive training magnitude. Other options combine aversive/fearful tasks with post-acquisition or post-retrieval administration of one or more drugs provoking neurochemical or epigenetic alterations reported in the trauma aftermath. It is potentially instructive to integrate these procedures and incorporate the measurement of autonomic and endocrine parameters. Factors to consider when defining the organismic and procedural variables, partially neglected aspects (sex-dependent differences and recent vs. remote data comparison) and suggestions for future research (identifying reliable individual risk and treatment-response predictors) are discussed.
Collapse
|
5
|
Ji M, Zhang Z, Gao F, Yang S, Wang J, Wang X, Zhu G. Curculigoside rescues hippocampal synaptic deficits elicited by PTSD through activating cAMP-PKA signaling. Phytother Res 2023; 37:759-773. [PMID: 36200803 DOI: 10.1002/ptr.7658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 02/17/2023]
Abstract
Chronic traumatic stress results in various psychiatric disorders, especially posttraumatic stress disorder (PTSD). Previous study demonstrated that curculigoside (CUR) a component of Rhizoma Curculiginis prevented fear extinction and stress-induced depression-like behaviors. However, its effects on PTSD and the mechanisms are still not completely clear. In this study, we observed typical PTSD-like phenotypes, synaptic deficit, and reduction of BDNF/TrkB signaling pathway in mice receiving modified single prolonged stress and electrical stimulation (SPS&S). By contrast, systemic administration of CUR blocked PTSD-like phenotypes and synaptic deficits, including reduction of BDNF/TrkB signaling pathway, GluA1 and Arc expression. Importantly, CUR reversed the impairment of PKA signaling pathway elicited by PTSD. We further confirmed that the effects of CUR on synaptic function were through PKA signaling pathway, as H-89, an inhibitor of PKA blocked the effect of CUR on behavioral changes and BDNF/TrkB signaling pathway. Thereafter, we verified that CUR on synaptic function were through PKA pathway using direct intracerebral injection of CUR and H-89. Direct intracerebral injection of CUR activated PKA/CREB/BDNF/TrkB, which was blocked by H-89. Additionally, the docking results showed high binding energies of CUR with A2AR, AC, PRKACA, and PRKAR1A, which might indicate that CUR functions through regulating PKA signaling pathway. In conclusion, CUR prevented the behavioral changes and hippocampal synaptic deficits elicited by PTSD through activating cAMP-PKA signaling.
Collapse
Affiliation(s)
- Manman Ji
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Zhengrong Zhang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Feng Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
6
|
Oubraim S, Wang R, Hausknecht K, Kaczocha M, Shen RY, Haj-Dahmane S. Prenatal ethanol exposure causes anxiety-like phenotype and alters synaptic nitric oxide and endocannabinoid signaling in dorsal raphe nucleus of adult male rats. Transl Psychiatry 2022; 12:440. [PMID: 36216807 PMCID: PMC9550821 DOI: 10.1038/s41398-022-02210-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022] Open
Abstract
Mood disorders, including anxiety and depression caused by prenatal ethanol exposure (PE) are prevalent conditions in fetal alcohol spectrum disorders (FASDs). Prenatal ethanol exposure is associated with persistent dysfunctions of several neurotransmitter systems, including the serotonin (5-HT) system, which plays a major role in mood regulation and stress homeostasis. While PE is known to disrupt the development of the 5-HT system, the cellular mechanisms by which it alters the function of dorsal raphe nucleus (DRn) 5-HT neurons and their synaptic inputs remain unknown. Here, we used a second-trimester binge-drinking pattern PE (two daily gavages of 15% w/v ethanol at 3 g/kg, 5-6 h apart) during gestational days 8 - 20 and measured anxiety-like behaviors of adult male rats using the elevated plus (EPM) and zero (ZM) mazes. We also employed ex-vivo electrophysiological and pharmacological approaches to unravel the mechanisms by which PE alters the excitability and synaptic transmission onto DRn 5-HT neurons. We found that PE enhanced anxiety-like behaviors in adult male rats and induced a persistent activation of DRn 5-HT neurons. The PE-induced activation of DRn 5-HT neurons was largely mediated by potentiation of DRn glutamate synapses, which was caused by activation of the nitrergic system and impaired endocannabinoid signaling. As such, the present study reveals "push-pull" effects of PE on nitrergic and eCB signaling, respectively, which mediate the enhanced activity of DRn 5-HT neurons and could contribute to anxiety-like behaviors observed in animal model of FASD.
Collapse
Affiliation(s)
- Saida Oubraim
- Department of Pharmacology and Toxicology, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Ruixiang Wang
- Department of Pharmacology and Toxicology, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Kathryn Hausknecht
- Department of Pharmacology and Toxicology, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Roh-Yu Shen
- Department of Pharmacology and Toxicology, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA
- University at Buffalo Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA.
- University at Buffalo Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
7
|
Sadeghi MA, Hemmati S, Nassireslami E, Yousefi Zoshk M, Hosseini Y, Abbasian K, Chamanara M. Targeting neuronal nitric oxide synthase and the nitrergic system in post-traumatic stress disorder. Psychopharmacology (Berl) 2022; 239:3057-3082. [PMID: 36029333 DOI: 10.1007/s00213-022-06212-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/04/2022] [Indexed: 12/22/2022]
Abstract
RATIONALE Current pharmacological approaches to treatment of post-traumatic stress disorder (PTSD) lack adequate effectiveness. As a result, identifying new molecular targets for drug development is necessary. Furthermore, fear learning and memory in PTSD can undergo different phases, such as fear acquisition, consolidation, and extinction. Each phase may involve different cellular pathways and brain regions. As a result, effective management of PTSD requires mindfulness of the timing of drug administration. One of the molecular targets currently under intense investigation is the N-methyl-D-aspartate (NMDA)-type glutamate receptor (NMDAR). However, despite the therapeutic efficacy of drugs targeting NMDAR, their translation into clinical use has been challenging due to their various side effects. One possible solution to this problem is to target signaling proteins downstream to NMDAR to improve targeting specificity. One of these proteins is the neuronal nitric oxide synthase (nNOS), which is activated following calcium influx through the NMDAR. OBJECTIVE In this paper, we review the literature on the pharmacological modulation of nNOS in animal models of PTSD to evaluate its therapeutic potential. Furthermore, we attempt to decipher the inconsistencies observed between the findings of these studies based on the specific phase of fear learning which they had targeted. RESULTS Inhibition of nNOS may inhibit fear acquisition and recall, while not having a significant effect on fear consolidation and extinction. However, it may improve extinction consolidation or reconsolidation blockade. CONCLUSIONS Modulation of nNOS has therapeutic potential against PTSD and warrants further development for use in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Amin Sadeghi
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Sara Hemmati
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | | - Yasaman Hosseini
- Cognitive Neuroscience Center, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Kourosh Abbasian
- Management and Health Economics Department, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran. .,Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|