1
|
Jeong EY, Kim HJ, Lee S, Park Y, Kim YM. Label-free long-term measurements of adipocyte differentiation from patient-driven fibroblasts and quantitative analyses of in situ lipid droplet generation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:C125-C136. [PMID: 39889084 DOI: 10.1364/josaa.528703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/20/2024] [Indexed: 02/02/2025]
Abstract
The visualization and tracking of adipocytes and their lipid droplets (LDs) during differentiation are pivotal in developmental biology and regenerative medicine studies. Traditional staining or labeling methods, however, pose significant challenges due to their labor-intensive sample preparation, potential disruption of intrinsic cellular physiology, and limited observation timeframe. This study introduces a novel method for long-term visualization and quantification of biophysical parameters of LDs in unlabeled adipocytes, utilizing the refractive index (RI) distributions of LDs and cells. We employ low-coherence holotomography (HT) to systematically investigate and quantitatively analyze the 42-day redifferentiation process of fat cells into adipocytes. This technique yields three-dimensional, high-resolution refractive tomograms of adipocytes, enabling precise segmentation of LDs based on their elevated RI values. Subsequent automated analysis quantifies the mean concentration, volume, projected area, and dry mass of individual LDs, revealing a gradual increase corresponding with adipocyte maturation. Our findings demonstrate that HT is a potent tool for non-invasively monitoring live adipocyte differentiation and analyzing LD accumulation. This study, therefore, offers valuable insights into adipogenesis and lipid research, establishing HT and image-based analysis as a promising approach in these fields.
Collapse
|
2
|
Sbrana F, Chellini F, Tani A, Parigi M, Garella R, Palmieri F, Zecchi-Orlandini S, Squecco R, Sassoli C. Label-free three-dimensional imaging and quantitative analysis of living fibroblasts and myofibroblasts by holotomographic microscopy. Microsc Res Tech 2024; 87:2757-2773. [PMID: 38984377 DOI: 10.1002/jemt.24648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Holotomography (HT) is a cutting-edge fast live-cell quantitative label-free imaging technique. Based on the principle of quantitative phase imaging, it combines holography and tomography to record a three-dimensional map of the refractive index, used as intrinsic optical and quantitative imaging contrast parameter of biological samples, at a sub-micrometer spatial resolution. In this study HT has been employed for the first time to analyze the changes of fibroblasts differentiating towards myofibroblasts - recognized as the main cell player of fibrosis - when cultured in vitro with the pro-fibrotic factor, namely transforming growth factor-β1. In parallel, F-actin, vinculin, α-smooth muscle actin, phospho-myosin light chain 2, type-1 collagen, peroxisome proliferator-activated receptor-gamma coactivator-1α expression and mitochondria were evaluated by confocal laser scanning microscopy. Plasmamembrane passive properties and transient receptor potential canonical channels' currents were also recorded by whole-cell patch-clamp. The fluorescence images and electrophysiological results have been compared to the data obtained by HT and their congruence has been discussed. HT turned out to be a valid approach to morphologically distinguish fibroblasts from well differentiated myofibroblasts while obtaining objective measures concerning volume, surface area, projection area, surface index and dry mass (i.e., the mass of the non-aqueous content inside the cell including proteins and subcellular organelles) of the entire cell, nuclei and nucleoli with the major advantage to monitor outer and inner features in living cells in a non-invasive, rapid and label-free approach. HT might open up new research opportunities in the field of fibrotic diseases. RESEARCH HIGHLIGHTS: Holotomography (HT) is a label-free laser interferometric imaging technology exploiting the intrinsic optical property of cells namely refractive index (RI) to enable a direct imaging and analysis of whole cells or intracellular organelles. HT turned out a valid approach to distinguish morphological features of living unlabeled fibroblasts from differentiated myofibroblasts. HT provided quantitative information concerning volume, surface area, projection area, surface index and dry mass of the entire fibroblasts/myofibroblasts, nuclei and nucleoli.
Collapse
Affiliation(s)
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| | - Martina Parigi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Francesco Palmieri
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Medina-Ramirez IE, Macias-Diaz JE, Masuoka-Ito D, Zapien JA. Holotomography and atomic force microscopy: a powerful combination to enhance cancer, microbiology and nanotoxicology research. DISCOVER NANO 2024; 19:64. [PMID: 38594446 PMCID: PMC11003950 DOI: 10.1186/s11671-024-04003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Modern imaging strategies are paramount to studying living systems such as cells, bacteria, and fungi and their response to pathogens, toxicants, and nanomaterials (NMs) as modulated by exposure and environmental factors. The need to understand the processes and mechanisms of damage, healing, and cell survivability of living systems continues to motivate the development of alternative imaging strategies. Of particular interest is the use of label-free techniques (microscopy procedures that do not require sample staining) that minimize interference of biological processes by foreign marking substances and reduce intense light exposure and potential photo-toxicity effects. This review focuses on the synergic capabilities of atomic force microscopy (AFM) as a well-developed and robust imaging strategy with demonstrated applications to unravel intimate details in biomedical applications, with the label-free, fast, and enduring Holotomographic Microscopy (HTM) strategy. HTM is a technique that combines holography and tomography using a low intensity continuous illumination laser to investigate (quantitatively and non-invasively) cells, microorganisms, and thin tissue by generating three-dimensional (3D) images and monitoring in real-time inner morphological changes. We first review the operating principles that form the basis for the complementary details provided by these techniques regarding the surface and internal information provided by HTM and AFM, which are essential and complimentary for the development of several biomedical areas studying the interaction mechanisms of NMs with living organisms. First, AFM can provide superb resolution on surface morphology and biomechanical characterization. Second, the quantitative phase capabilities of HTM enable superb modeling and quantification of the volume, surface area, protein content, and mass density of the main components of cells and microorganisms, including the morphology of cells in microbiological systems. These capabilities result from directly quantifying refractive index changes without requiring fluorescent markers or chemicals. As such, HTM is ideal for long-term monitoring of living organisms in conditions close to their natural settings. We present a case-based review of the principal uses of both techniques and their essential contributions to nanomedicine and nanotoxicology (study of the harmful effects of NMs in living organisms), emphasizing cancer and infectious disease control. The synergic impact of the sequential use of these complementary strategies provides a clear drive for adopting these techniques as interdependent fundamental tools.
Collapse
Affiliation(s)
- Iliana E Medina-Ramirez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico.
| | - J E Macias-Diaz
- Department of Mathematics and Physics, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - David Masuoka-Ito
- Department of Stomatology, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - Juan Antonio Zapien
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
4
|
Cho MJ, Kim CE, Shin YH, Kim JK, Pack CG. Influence of Chemical and Genetic Manipulations on Cellular Organelles Quantified by Label-Free Optical Diffraction Tomography. Anal Chem 2023; 95:13478-13487. [PMID: 37523497 DOI: 10.1021/acs.analchem.3c01349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Label-free optical diffraction tomography provides three-dimensional imaging of cells and organelles, along with their refractive index (RI) and volume. These physical parameters are valuable for quantitative and accurate analysis of the subcellular microenvironment and its connections to intracellular biological properties. In biological and biochemical cell analysis, various invasive cell manipulations are used, such as temperature change, chemical fixation, live cell staining with fluorescent dye, and gene overexpression of exogenous proteins. However, it is not fully understood how these various manipulations affect the physicochemical properties of different organelles. In this study, we investigated the impact of these manipulations on the cellular properties of single HeLa cells. We found that after cell fixation and an increase in temperature, the RI value of organelles, such as the nucleus and cytoplasm, significantly decreased overall. Interestingly, unlike the cell nuclei, cytoplasmic RI values were hardly detected after membrane permeation, indicating that only intracytoplasmic components were largely lost. Additionally, our findings revealed that the expression of GFP and GFP-tagged proteins significantly increased the RI values of organelles in living cells compared to the less effective RI changes observed with chemical fluorescence staining for cell organelles. The result demonstrates that distinct types of invasive manipulations can alter the microenvironment of organelles in different ways. Our study sheds new light on how chemical and genetic manipulations affect organelles.
Collapse
Affiliation(s)
- Min Ju Cho
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Chae-Eun Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Yeon Hui Shin
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jun Ki Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Biomedical Engineering, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Chan-Gi Pack
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Biomedical Engineering, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
5
|
Lee C, Hugonnet H, Park J, Lee MJ, Park W, Park Y. Single-shot refractive index slice imaging using spectrally multiplexed optical transfer function reshaping. OPTICS EXPRESS 2023; 31:13806-13816. [PMID: 37157259 DOI: 10.1364/oe.485559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The refractive index (RI) of cells and tissues is crucial in pathophysiology as a noninvasive and quantitative imaging contrast. Although its measurements have been demonstrated using three-dimensional quantitative phase imaging methods, these methods often require bulky interferometric setups or multiple measurements, which limits the measurement sensitivity and speed. Here, we present a single-shot RI imaging method that visualizes the RI of the in-focus region of a sample. By exploiting spectral multiplexing and optical transfer function engineering, three color-coded intensity images of a sample with three optimized illuminations were simultaneously obtained in a single-shot measurement. The measured intensity images were then deconvoluted to obtain the RI image of the in-focus slice of the sample. As a proof of concept, a setup was built using Fresnel lenses and a liquid-crystal display. For validation purposes, we measured microspheres of known RI and cross-validated the results with simulated results. Various static and highly dynamic biological cells were imaged to demonstrate that the proposed method can conduct single-shot RI slice imaging of biological samples with subcellular resolution.
Collapse
|
6
|
Szittner Z, Péter B, Kurunczi S, Székács I, Horváth R. Functional blood cell analysis by label-free biosensors and single-cell technologies. Adv Colloid Interface Sci 2022; 308:102727. [DOI: 10.1016/j.cis.2022.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/01/2022]
|
7
|
Kim M, Yoon K, Kim KG. Design of the Floating Hologram Method with a Reverse Pyramid Type for CT and MR Diagnosis in Clinical Room. Diagnostics (Basel) 2022; 12:diagnostics12051157. [PMID: 35626312 PMCID: PMC9140033 DOI: 10.3390/diagnostics12051157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/04/2022] Open
Abstract
In the field of medical diagnosis, big data and three-dimensional (3D) imaging diagnosis technology are being applied due to the development of these technologies. Using radiology diagnosis methods, medical staff are increasing their understanding and ability to explain symptoms to patients, but they are experiencing difficulties due to communication problems. Therefore, if the medical staff shows the lesion by providing the patient with a 3D image, the understanding of the patient can be increased. This paper proposes the design of a system to produce an inverted pyramid-shaped floating holographic image to increase the patient’s understanding. The hologram system consists of an optical source generator and a beam mirror and utilizes a technology to plot an image using a 45° refraction angle of the beam of the optical source. Selected objects for observation were liver, colon, and lung, and to observe these tissues, a Computed Tomography (CT) image was input to the hologram system through the picture archiving and communication system (PACS), and the image was displayed. Tissues observed through the mirror can be observed from the left, right, front, and back with a 360° anterior view. Therefore, it is possible to observe at the desired position by the medical staff and the patient in the treatment room, and the image is large and clear, so it is very satisfying to observe. As a holographic imaging diagnostic system, it is expected that this study can be used in clinics, medical education rooms, and operating rooms in the future.
Collapse
Affiliation(s)
- Minchan Kim
- Department School of Medicine, College of Medicine, National Cheng Kung University, Tainan City 704, Taiwan;
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Korea;
| | - Kicheol Yoon
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Korea;
- Department of Biomedical Engineering, College of Medicine, Gachon University, 38-13, 3 Beon-gil, Dokjom-ro 3, Namdong-gu, Incheon 21565, Korea
| | - Kwang Gi Kim
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Korea;
- Department of Biomedical Engineering, College of Medicine, Gachon University, 38-13, 3 Beon-gil, Dokjom-ro 3, Namdong-gu, Incheon 21565, Korea
- Department of Biomedical Engineering, College of Health Science, Gachon University, 191 Hambak-moero, Yeonsu-gu, Incheon 21936, Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, 38-13, 3 Beon-gil, Dokjom-ro, Namdong-gu, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-458-2880
| |
Collapse
|