1
|
Liu X, Zhou Y, Chen K, Xiao Z, Liang X, Lu D. Phosphorylation status of CPK28 affects its ubiquitination and protein stability. THE NEW PHYTOLOGIST 2023; 237:1270-1284. [PMID: 36333900 DOI: 10.1111/nph.18596] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Plant innate immunity is tightly regulated. The Arabidopsis thaliana CALCIUM-DEPENDENT PROTEIN KINASE28 (CPK28) functions as a negative immune regulator. We recently demonstrate that CPK28 undergoes ubiquitination that is mediated by two ubiquitin ligases, ARABIDOPSIS TÓXICOS EN LEVADURA31 (ATL31) and ATL6, which results in its proteasomal degradation. CPK28 undergoes both intermolecular autophosphorylation and BIK1-mediated phosphorylation. However, whether the phosphorylation status of CPK28 dictates its ubiquitination and degradation is unknown yet. We used immune response analysis, transient degradation system, ubiquitination assays, co-immunoprecipitation, and other biochemical and genetic approaches to investigate the effect of the phosphorylation status of CPK28 on its degradation mediated by ATL31/6. We found the mutation of Ser318 (a site of both intermolecular autophosphorylation and BIK1-mediated phosphorylation) or a BIK1 phosphorylation site on CPK28 leads to its compromised association with ATL31 and reduced ubiquitination by ATL31. Moreover, we confirm the previous findings that two CPK28s can interact with each other, which likely promotes the intermolecular autophosphorylation. We also show that the phosphorylation status of CPK28 in turn affects its intermolecular association. We demonstrate that the phosphorylation status of CPK28 affects its degradation mediated by ATL31. Our findings reveal a link between phosphorylation of CPK28 and its ubiquitination and degradation.
Collapse
Affiliation(s)
- Xiaotong Liu
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yuanyuan Zhou
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kexin Chen
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zejun Xiao
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuelian Liang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Dongping Lu
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| |
Collapse
|
2
|
Gao C, Tang D, Wang W. The Role of Ubiquitination in Plant Immunity: Fine-Tuning Immune Signaling and Beyond. PLANT & CELL PHYSIOLOGY 2022; 63:1405-1413. [PMID: 35859340 DOI: 10.1093/pcp/pcac105] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitination is an essential posttranslational modification and plays a crucial role in regulating plant immunity by modulating protein activity, stability, abundance and interaction. Recently, major breakthroughs have been made in understanding the mechanisms associated with the regulation of immune signaling by ubiquitination. In this mini review, we highlight the recent advances in the role of ubiquitination in fine-tuning the resistance activated by plant pattern recognition receptors (PRRs) and intracellular nucleotide-binding site and leucine-rich repeat domain receptors (NLRs). We also discuss current understanding of the positive regulation of plant immunity by ubiquitination, including the modification of immune negative regulators and of the guardee proteins monitored by NLRs.
Collapse
Affiliation(s)
- Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|