1
|
Lin Y, Jiang S, Yao Y, Li H, Jin H, Yang G, Ji B, Li Y. Posttranslational Modification in Bone Homeostasis and Osteoporosis. MedComm (Beijing) 2025; 6:e70159. [PMID: 40170748 PMCID: PMC11959162 DOI: 10.1002/mco2.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
Bone is responsible for providing mechanical protection, attachment sites for muscles, hematopoiesis micssroenvironment, and maintaining balance between calcium and phosphorate. As a highly active and dynamically regulated organ, the balance between formation and resorption of bone is crucial in bone development, damaged bone repair, and mineral homeostasis, while dysregulation in bone remodeling impairs bone structure and strength, leading to deficiency in bone function and skeletal disorder, such as osteoporosis. Osteoporosis refers to compromised bone mass and higher susceptibility of fracture, resulting from several risk factors deteriorating the balanced system between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. This balanced system is strictly regulated by translational modification, such as phosphorylation, methylation, acetylation, ubiquitination, sumoylation, glycosylation, ADP-ribosylation, S-palmitoylation, citrullination, and so on. This review specifically describes the updating researches concerning bone formation and bone resorption mediated by posttranslational modification. We highlight dysregulated posttranslational modification in osteoblast and osteoclast differentiation. We also emphasize involvement of posttranslational modification in osteoporosis development, so as to elucidate the underlying molecular basis of osteoporosis. Then, we point out translational potential of PTMs as therapeutic targets. This review will deepen our understanding between posttranslational modification and osteoporosis, and identify novel targets for clinical treatment and identify future directions.
Collapse
Affiliation(s)
- Yuzhe Lin
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- Xiangya School of Medicine Central South UniversityChangshaChina
| | - Shide Jiang
- The Central Hospital of YongzhouYongzhouChina
| | - Yuming Yao
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Hengzhen Li
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Hongfu Jin
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Guang Yang
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Bingzhou Ji
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Yusheng Li
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
2
|
Ji W, Gong G, Liu Y, Liu Y, Zhang J, Li Q. Icariin promotes osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by activating PI3K-AKT-UTX/EZH2 signaling in steroid-induced femoral head osteonecrosis. J Orthop Surg Res 2025; 20:290. [PMID: 40098175 PMCID: PMC11917108 DOI: 10.1186/s13018-025-05697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/08/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Differentiation of bone marrow mesenchymal stem cells (BMSCs) is pivotal in the pathogenesis of steroid-induced femoral head osteonecrosis. Icariin, an active ingredient in Epimedii herba, has the potential to regulate osteogenic differentiation of BMSCs. Nevertheless, the related mechanism is still unclear. The study aimed to explore whether icariin can affect osteogenic differentiation by activating PI3K/AKT signaling to alter UTX and EZH2 expression and thus regulating osteogenesis-related genes in BMSCs. METHODS BMSCs were collected from Sprague Dawley rats and identified by measuring the positive ratios of cell markers using flow cytometry. Cells were treated with 1 μmol/L dexamethasone (DEX) for 24 h with or without 0.1-10 μM of icariin treatment. Cell counting Kit-8 (CCK-8) assays and flow cytometry analyses were performed to measure cell viability and apoptosis. Western blotting was conducted for measurement of apoptotic markers, factors involved in the PI3K/AKT-UTX/EZH2 pathway, osteogenic markers, and adipogenesis-related factors. Alizarin red S staining and Oil-red O staining were performed to measure the effect of DEX, icariin, UTX overexpression, or EZH2 knockdown on osteogenic and adipogenic differentiation of BMSCs. RESULTS Icariin ameliorated DEX-induced rat BMSC injury. Icariin activated the PI3K/AKT signaling, thereby upregulating UTX and phosphorylated EZH2 levels while inhibiting EZH2 and H3K27me3 expression. Additionally, icariin promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs. Importantly, overexpressing UTX or silencing EZH2 exerted similar effects on BMSC differentiation as icariin did. CONCLUSIONS Icariin promotes osteogenic differentiation of DEX-treated BMSCs by activating PI3K/AKT signaling to upregulate UTX and inhibit EZH2, finally inducing H3K27me3 depletion.
Collapse
Affiliation(s)
- Wei Ji
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Guoqing Gong
- Department of Otolaryngology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, 430060, China
| | - Yuanhang Liu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Yan Liu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Jie Zhang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Qiang Li
- Department of Foot and Ankle, Nanchang Hongdu Hospital of Traditional Chinese Medicine, No.264 Minde Road, Donghu District, Nanchang, 330000, China.
| |
Collapse
|
3
|
Zhang J, Liu H, Liu Y, Luo E, Liu S. Unlocking the potential of histone modification in regulating bone metabolism. Biochimie 2024; 227:286-298. [PMID: 39154977 DOI: 10.1016/j.biochi.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
Bone metabolism plays a crucial role in maintaining normal bone tissue homeostasis and function. Imbalances between bone formation and resorption can lead to osteoporosis, osteoarthritis, and other bone diseases. The dynamic and complex process of bone remodeling is driven by various factors, including epigenetics. Histone modification, one of the most important and well-studied components of epigenetic regulation, has emerged as a promising area of research in bone metabolism. Different histone proteins and modification sites exert diverse effects on osteogenesis and osteoclastogenesis. In this review, we summarize recent progress in understanding histone modifications in bone metabolism, including specific modification sites and potential regulatory enzymes. Comprehensive knowledge of histone modifications in bone metabolism could reveal new therapeutic targets and treatment strategies for bone diseases.
Collapse
Affiliation(s)
- Jiayuan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Zhang Y, Chen Q. Novel insights into osteocyte and inter-organ/tissue crosstalk. Front Endocrinol (Lausanne) 2024; 14:1308408. [PMID: 38685911 PMCID: PMC11057460 DOI: 10.3389/fendo.2023.1308408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/14/2023] [Indexed: 05/02/2024] Open
Abstract
Osteocyte, a cell type living within the mineralized bone matrix and connected to each other by means of numerous dendrites, appears to play a major role in body homeostasis. Benefiting from the maturation of osteocyte extraction and culture technique, many cross-sectional studies have been conducted as a subject of intense research in recent years, illustrating the osteocyte-organ/tissue communication not only mechanically but also biochemically. The present review comprehensively evaluates the new research work on the possible crosstalk between osteocyte and closely situated or remote vital organs/tissues. We aim to bring together recent key advances and discuss the mutual effect of osteocyte and brain, kidney, vascular calcification, muscle, liver, adipose tissue, and tumor metastasis and elucidate the therapeutic potential of osteocyte.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingchang Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
5
|
Shpargel KB, Quickstad G. SETting up the genome: KMT2D and KDM6A genomic function in the Kabuki syndrome craniofacial developmental disorder. Birth Defects Res 2023; 115:1885-1898. [PMID: 37800171 PMCID: PMC11190966 DOI: 10.1002/bdr2.2253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Kabuki syndrome is a congenital developmental disorder that is characterized by distinctive facial gestalt and skeletal abnormalities. Although rare, the disorder shares clinical features with several related craniofacial syndromes that manifest from mutations in chromatin-modifying enzymes. Collectively, these clinical studies underscore the crucial, concerted functions of chromatin factors in shaping developmental genome structure and driving cellular transcriptional states. Kabuki syndrome predominantly results from mutations in KMT2D, a histone H3 lysine 4 methylase, or KDM6A, a histone H3 lysine 27 demethylase. AIMS In this review, we summarize the research efforts to model Kabuki syndrome in vivo to understand the cellular and molecular mechanisms that lead to the craniofacial and skeletal pathogenesis that defines the disorder. DISCUSSION As several studies have indicated the importance of KMT2D and KDM6A function through catalytic-independent mechanisms, we highlight noncanonical roles for these enzymes as recruitment centers for alternative chromatin and transcriptional machinery.
Collapse
Affiliation(s)
- Karl B. Shpargel
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Gabrielle Quickstad
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
6
|
Mullin BH, Ribet ABP, Pavlos NJ. Bone Trans-omics: Integrating Omics to Unveil Mechanistic Molecular Networks Regulating Bone Biology and Disease. Curr Osteoporos Rep 2023; 21:493-502. [PMID: 37410317 PMCID: PMC10543827 DOI: 10.1007/s11914-023-00812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE OF REVIEW Recent advancements in "omics" technologies and bioinformatics have afforded researchers new tools to study bone biology in an unbiased and holistic way. The purpose of this review is to highlight recent studies integrating multi-omics data gathered from multiple molecular layers (i.e.; trans-omics) to reveal new molecular mechanisms that regulate bone biology and underpin skeletal diseases. RECENT FINDINGS Bone biologists have traditionally relied on single-omics technologies (genomics, transcriptomics, proteomics, and metabolomics) to profile measureable differences (both qualitative and quantitative) of individual molecular layers for biological discovery and to investigate mechanisms of disease. Recently, literature has grown on the implementation of integrative multi-omics to study bone biology, which combines computational and informatics support to connect multiple layers of data derived from individual "omic" platforms. This emerging discipline termed "trans-omics" has enabled bone biologists to identify and construct detailed molecular networks, unveiling new pathways and unexpected interactions that have advanced our mechanistic understanding of bone biology and disease. While the era of trans-omics is poised to revolutionize our capacity to answer more complex and diverse questions pertinent to bone pathobiology, it also brings new challenges that are inherent when trying to connect "Big Data" sets. A concerted effort between bone biologists and interdisciplinary scientists will undoubtedly be needed to extract physiologically and clinically meaningful data from bone trans-omics in order to advance its implementation in the field.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, 2nd Floor "M" Block QEII Medical Centre, Nedlands, WA, 6009, Australia
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Amy B P Ribet
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, 2nd Floor "M" Block QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Nathan J Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, 2nd Floor "M" Block QEII Medical Centre, Nedlands, WA, 6009, Australia.
| |
Collapse
|
7
|
Lian WS, Wu RW, Ko JY, Chen YS, Wang SY, Jahr H, Wang FS. Inhibition of histone lysine demethylase 6A promotes chondrocytic activity and attenuates osteoarthritis development through repressing H3K27me3 enhancement of Wnt10a. Int J Biochem Cell Biol 2023; 158:106394. [PMID: 36871937 DOI: 10.1016/j.biocel.2023.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/08/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Histone hypermethylation represses gene transcription, which affects cartilage homeostasis or joint remodeling. Trimethylation of lysine 27 of histone 3 (H3K27me3) changes epigenome signatures, regulating tissue metabolism. This study aimed to investigate whether loss of H3K27me3 demethylase Kdm6a function affected osteoarthritis development. We revealed that chondrocyte-specific Kdm6a knockout mice developed relatively long femurs and tibiae as compared to wild-type mice. Kdm6a deletion mitigated osteoarthritis symptoms, including articular cartilage loss, osteophyte formation, subchondral trabecular bone loss, and irregular walking patterns of destabilized medial meniscus-injured knees. In vitro, loss of Kdm6a function compromised the loss in expression of key chondrocyte markers Sox9, collagen II, and aggrecan and improved glycosaminoglycan production in inflamed chondrocytes. RNA sequencing showed that Kdm6a loss changed transcriptomic profiles, which contributed to histone signaling, NADPH oxidase, Wnt signaling, extracellular matrix, and cartilage development in articular cartilage. Chromatin immunoprecipitation sequencing uncovered that Kdm6a knockout affected H3K27me3 binding epigenome, repressing Wnt10a and Fzd10 transcription. Wnt10a was, among others, functional molecules regulated by Kdm6a. Forced Wnt10a expression attenuated Kdm6a deletion-induced glycosaminoglycan overproduction. Intra-articular administration with Kdm6a inhibitor GSK-J4 attenuated articular cartilage erosion, synovitis, and osteophyte formation, improving gait profiles of injured joints. In conclusion, Kdm6a loss promoted transcriptomic landscapes contributing to extracellular matrix synthesis and compromised epigenetic H3K27me3-mediated promotion of Wnt10a signaling, preserving chondrocytic activity to attenuate osteoarthritic degeneration. We highlighted the chondroprotective effects of Kdm6a inhibitor for mitigating the development of osteoarthritic disorders.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostics, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Memorial Hospital, Kaohsiung, Taiwan; Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostics, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Memorial Hospital, Kaohsiung, Taiwan; Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shao-Yu Wang
- Core Laboratory for Phenomics and Diagnostics, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Memorial Hospital, Kaohsiung, Taiwan; Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Germany; Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostics, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Memorial Hospital, Kaohsiung, Taiwan; Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Yu W, Wang HL, Zhang J, Yin C. The effects of epigenetic modifications on bone remodeling in age-related osteoporosis. Connect Tissue Res 2023; 64:105-116. [PMID: 36271658 DOI: 10.1080/03008207.2022.2120392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE As the population ages, there is an increased risk of fracture and morbidity diseases associated with aging, such as age-related osteoporosis and other bone diseases linked to aging skeletons. RESULTS Several bone-related cells, including multipotent bone mesenchymal stem cells, osteoblasts that form bone tissue, and osteoclasts that break it down, are in symbiotic relationships throughout life. Growing evidence indicates that epigenetic modifications of cells caused by aging contribute to compromised bone remodeling and lead to osteoporosis. A number of epigenetic mechanisms are at play, including DNA/RNA modifications, histone modifications, microRNAs (miRNAs), and long noncoding RNAs (lncRNAs), as well as chromatin remodeling. CONCLUSION In this review, we summarized the epigenetic modifications of different bone-related cells during the development and progression of osteoporosis associated with aging. Additionally, we described a compensatory recovery mechanism under epigenetic regulation that may lead to new strategies for regulating bone remodeling in age-related osteoporosis.
Collapse
Affiliation(s)
- Wenyue Yu
- School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - He-Ling Wang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Jianying Zhang
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Chengcheng Yin
- School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| |
Collapse
|