1
|
Estevinho MM, Midya V, Cohen-Mekelburg S, Allin KH, Fumery M, Pinho SS, Colombel JF, Agrawal M. Emerging role of environmental pollutants in inflammatory bowel disease risk, outcomes and underlying mechanisms. Gut 2025; 74:477-486. [PMID: 39179372 PMCID: PMC11802320 DOI: 10.1136/gutjnl-2024-332523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Epidemiological and translational data increasingly implicate environmental pollutants in inflammatory bowel disease (IBD). Indeed, the global incidence of IBD has been rising, particularly in developing countries, in parallel with the increased use of chemicals and synthetic materials in daily life and escalating pollution levels. Recent nationwide and ecological studies have reported associations between agricultural pesticides and IBD, particularly Crohn's disease. Exposure to other chemical categories has also been linked with an increased risk of IBD. To synthesise available data and identify knowledge gaps, we conducted a systematic review of human studies that reported on the impact of environmental pollutants on IBD risk and outcomes. Furthermore, we summarised in vitro data and animal studies investigating mechanisms underlying these associations. The 32 included human studies corroborate that heavy and transition metals, except zinc, air pollutants, per- and polyfluorinated substances, and pesticides are associated with an increased risk of IBD, with exposure to air pollutants being associated with disease-related adverse outcomes as well. The narrative review of preclinical studies suggests several overlapping mechanisms underlying these associations, including increased intestinal permeability, systemic inflammation and dysbiosis. A consolidated understanding of the impact of environmental exposures on IBD risk and outcomes is key to the identification of potentially modifiable risk factors and to inform strategies towards prediction, prevention and mitigation of IBD.
Collapse
Affiliation(s)
- Maria Manuela Estevinho
- Department of Gastroenterology, Unidade Local de Saúde Gaia Espinho, Vila Nova de Gaia, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Vishal Midya
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shirley Cohen-Mekelburg
- Division of Gastroenterology and Hepatology, University of Michigan Medicine, Ann Arbor, Michigan, USA
- VA Center for Clinical Management Research, VA Ann Arbor Health Care System, Ann Arbor, Michigan, USA
| | - Kristine Højgaard Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Mathurin Fumery
- Department of Gastroenterology, CHU Amiens and PériTox, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Salome S Pinho
- i3S, Institute for Research and Innovation in Health, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jean-Frederic Colombel
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Manasi Agrawal
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Li K, Zhou Z, Cao Y. Effects of orally exposed SiO 2 nanoparticles on lipid profiles in gut-liver axis of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117580. [PMID: 39708451 DOI: 10.1016/j.ecoenv.2024.117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Recently we proposed the possibility of orally exposed nanoparticles (NPs) to alter metabolite homeostasis by changing metabolism pathways, in addition to intestinal damages, but relatively few studies investigated the changes of metabolite profiles in multi-organs. This study investigated the influences of orally exposed SiO2 NPs on lipid profiles in gut-liver axis. To this end, we treated mice with 16, 160 or 1600 mg/kg bodyweight SiO2 NPs via intragastric route. After 5 days exposure (once a day), we observed that SiO2 NPs induced minimal pathological changes but increased most of the trace elements. Furthermore, lipid staining was gradually decreased in intestines and livers with the increase of NP levels. Consistently, lipidomics results showed that most of the lipid classes in mouse intestines and livers were decreased following SiO2 NP administration. We further identified the lipid classes significantly decreased in both intestines and livers, such as phosphatidylserine (PS), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE). Only a few lipid classes, such as anandamide, showed opposite trends in these organs. For metabolism pathway, SiO2 NPs suppressed autophagy, showing as a significant decrease of microtubule-associated protein 1 A/1B light chain 3 (LC3) and adipose triglyceride lipase (Atgl), accompanying with an accumulation of P62, in both intestines and livers. However, lysosomal-associated membrane protein 2 (Lamp2) showed different trend, that it was significantly increased in intestines but decreased in livers. Combined, our results indicated that intragastric administration of SiO2 NPs altered trace element balance and lipid profiles, accompanying with a change of autophagic lipolysis proteins, in mouse gut-liver axis.
Collapse
Affiliation(s)
- Kuanhang Li
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhengzheng Zhou
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
3
|
Walraven T, Busch M, Wang J, Donkers JM, Duijvestein M, van de Steeg E, Kramer NI, Bouwmeester H. Elevated risk of adverse effects from foodborne contaminants and drugs in inflammatory bowel disease: a review. Arch Toxicol 2024; 98:3519-3541. [PMID: 39249550 PMCID: PMC11489187 DOI: 10.1007/s00204-024-03844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
The global burden of Inflammatory bowel disease (IBD) has been rising over the last decades. IBD is an intestinal disorder with a complex and largely unknown etiology. The disease is characterized by a chronically inflamed gastrointestinal tract, with intermittent phases of exacerbation and remission. This compromised intestinal barrier can contribute to, enhance, or even enable the toxicity of drugs, food-borne chemicals and particulate matter. This review discusses whether the rising prevalence of IBD in our society warrants the consideration of IBD patients as a specific population group in toxicological safety assessment. Various in vivo, ex vivo and in vitro models are discussed that can simulate hallmarks of IBD and may be used to study the effects of prevalent intestinal inflammation on the hazards of these various toxicants. In conclusion, risk assessments based on healthy individuals may not sufficiently cover IBD patient safety and it is suggested to consider this susceptible subgroup of the population in future toxicological assessments.
Collapse
Affiliation(s)
- Tom Walraven
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Mathias Busch
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jingxuan Wang
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Joanne M Donkers
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Marjolijn Duijvestein
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Nynke I Kramer
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Capobianco I, Di Vincenzo F, Puca P, Becherucci G, Mentella MC, Petito V, Scaldaferri F. Adverse Food Reactions in Inflammatory Bowel Disease: State of the Art and Future Perspectives. Nutrients 2024; 16:351. [PMID: 38337636 PMCID: PMC10857040 DOI: 10.3390/nu16030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Limited knowledge is available about the relationship between food allergies or intolerances and inflammatory bowel disease (IBD). Clinicians frequently encounter patients who report food allergies or intolerances, and gastroenterologists struggle distinguishing between patients with organic disorders and those with functional disorders, which the patients themselves may associate with specific dietary components. This task becomes even more arduous when managing patients with significant underlying organic conditions, like IBD. The aim of this review is to summarize and emphasize any actual associations between food allergies and intolerances and inflammatory diseases, such as ulcerative colitis and Crohn's disease. Through a narrative disceptation of the current literature, we highlight the increased prevalence of various food intolerances, including lactose, fructose, histamine, nickel, and non-celiac gluten sensitivity, in individuals with IBD. Additionally, we explore the association between increased epithelial barrier permeability in IBD and the development of food sensitization. By doing so, we aim to enhance clinicians' awareness of the nutritional management of patients with IBD when facing complaints or evidence of food allergies or intolerances.
Collapse
Affiliation(s)
- Ivan Capobianco
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (P.P.); (F.S.)
| | - Federica Di Vincenzo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (P.P.); (F.S.)
| | - Pierluigi Puca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (P.P.); (F.S.)
| | - Guia Becherucci
- UOC Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.B.); (M.C.M.)
| | - Maria Chiara Mentella
- UOC Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.B.); (M.C.M.)
| | - Valentina Petito
- IBD Unit, UOC CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Franco Scaldaferri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (P.P.); (F.S.)
- IBD Unit, UOC CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
5
|
Tamura A, Ito G, Matsuda H, Nibe-Shirakihara Y, Hiraoka Y, Kitagawa S, Hiraguri Y, Nagata S, Aonuma E, Otsubo K, Nemoto Y, Nagaishi T, Watanabe M, Okamoto R, Oshima S. Zranb1-mutant mice display abnormal colonic mucus production and exacerbation of DSS-induced colitis. Biochem Biophys Res Commun 2022; 628:147-154. [DOI: 10.1016/j.bbrc.2022.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
|
6
|
Wyszkowska J, Borowik A, Zaborowska M, Kucharski J. Mitigation of the Adverse Impact of Copper, Nickel, and Zinc on Soil Microorganisms and Enzymes by Mineral Sorbents. MATERIALS 2022; 15:ma15155198. [PMID: 35955133 PMCID: PMC9369485 DOI: 10.3390/ma15155198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 02/02/2023]
Abstract
Despite numerous studies on the influence of heavy metals on soil health, the search for effective, eco-friendly, and economically viable remediation substances is far from over. This encouraged us to carry out a study under strictly controlled conditions to test the effects of Cu2+, Ni2+, and Zn2+ added to soil in amounts of 150 mg·kg−1 d.m. of soil on the soil microbiome, on the activity of two oxidoreductases and five hydrolases, and on the growth and development of the sunflower Helianthus annunus L. The remediation substances were a molecular sieve, halloysite, sepiolite, expanded clay, zeolite, and biochar. It has been demonstrated that the most severe turbulences in the soil microbiome, its activity, and the growth of Helianthus annunus L. were caused by Ni2+, followed by Cu2+, and the mildest negative effect was produced by Zn2+. The adverse impact of heavy metals on the soil microbiome and its activity was alleviated by the applied sorbents. Their application also contributed to the increased biomass of plants, which is significant for the successful phytoextraction of these metals from soil. Irrespective of which property was analysed, sepiolite can be recommended for the remediation of soil polluted with Ni2+ and zeolite—for soil polluted with Cu2+ and Zn2+. Both sorbents mitigated to the highest degree disturbances caused by the tested metals in the soil environment.
Collapse
|