1
|
Yin D, Niu R, Lu P, Yin R, Lin Z. The effect of stored autologous blood transfusion on IL-1, IL-6, TNF-α and liver function recovery in patients undergoing liver cancer surgery. Discov Oncol 2024; 15:815. [PMID: 39704968 DOI: 10.1007/s12672-024-01660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
PURPOSE This study aim is to evaluate the application of stored autologous blood transfusion in liver cancer surgery and explore its impact on postoperative changes in inflammatory factors and liver function recovery. METHOD The study used a control group (CG) design and included 150 patients who underwent liver cancer surgery. While the observation group (OG) got autologous blood that had been preserved, the CG had a standard allogeneic blood transfusion. Examine the variations between the CG and the OG using the following measures: prior to, during, and following surgery contrast MELD score, blood routine indicators, pro-inflammatory cytokine levels. RESULT MELD ratings, IL-1, IL-6, TNF-α levels, and preoperative blood routine indicators did not differ between the observation and CGs (p > 0.05). However, the blood routine indicators in the OG were lower than those in the CG on the first day following surgery (p < 0.05); seven days following surgery, there was no significant difference among the experiment participants (p > 0.05). In the meanwhile, the postoperative OG's levels of IL-1, IL-6, TNF-α, and HAF were lower than those of the CG (p < 0.05). The PVF of the OG was lower than the CG on the first day following surgery (p < 0.05), but on the seventh day following surgery, there was no discernible difference between the experiment's participants (p > 0.05). CONCLUSION The research outcomes showcase that stored autologous blood transfusion can reduce the levels of inflammatory factors after surgery and promote the recovery of liver function;Research suggests important references for further understanding the application and mechanism of stored autologous blood transfusion, and provide a basis for personalized treatment and recovery of liver cancer patients undergoing surgery.
Collapse
Affiliation(s)
- Dongliang Yin
- Department of Hepatobiliary and Pancreatic Surgery, Dongguan People's Hospital, Dongguan, 523059, China.
| | - Ruirong Niu
- Department of Neurosurgery, Dongguan People's Hospital, Dongguan, 523059, China
| | - Peilin Lu
- Department of Hepatobiliary and Pancreatic Surgery, Dongguan People's Hospital, Dongguan, 523059, China
| | - Ruilong Yin
- Department of Hepatobiliary and Pancreatic Surgery, Dongguan People's Hospital, Dongguan, 523059, China
| | - Zhiqiang Lin
- Department of Hepatobiliary and Pancreatic Surgery, Dongguan People's Hospital, Dongguan, 523059, China
| |
Collapse
|
2
|
Li X, Li Q, Wang L, Ding H, Wang Y, Liu Y, Gong T. The interaction between oral microbiota and gut microbiota in atherosclerosis. Front Cardiovasc Med 2024; 11:1406220. [PMID: 38932989 PMCID: PMC11199871 DOI: 10.3389/fcvm.2024.1406220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis (AS) is a complex disease caused by multiple pathological factors threatening human health-the pathogenesis is yet to be fully elucidated. In recent years, studies have exhibited that the onset of AS is closely involved with oral and gut microbiota, which may initiate or worsen atherosclerotic processes through several mechanisms. As for how the two microbiomes affect AS, existing mechanisms include invading plaque, producing active metabolites, releasing lipopolysaccharide (LPS), and inducing elevated levels of inflammatory mediators. Considering the possible profound connection between oral and gut microbiota, the effect of the interaction between the two microbiomes on the initiation and progression of AS has been investigated. Findings are oral microbiota can lead to gut dysbiosis, and exacerbate intestinal inflammation. Nevertheless, relevant research is not commendably refined and a concrete review is needed. Hence, in this review, we summarize the most recent mechanisms of the oral microbiota and gut microbiota on AS, illustrate an overview of the current clinical and epidemiological evidence to support the bidirectional connection between the two microbiomes and AS.
Collapse
Affiliation(s)
- Xinsi Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Qian Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Li Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Huifen Ding
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yizhong Wang
- Department of Research & Development, Zhejiang Charioteer Pharmaceutical Co., Ltd, Taizhou, China
| | - Yunfei Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Gong
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Atchaneeyasakul K, Bates KE, Toledo A, Griswold AJ, Ramdas K, Watanabe M, Shownkeen M, Guada L, Yavagal D. Utilizing RNA sequencing to identify gene expression markers of stroke-causing thrombi origin: A pilot study. J Stroke Cerebrovasc Dis 2024; 33:107518. [PMID: 38492543 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 03/18/2024] Open
Abstract
INTRODUCTION Stroke embolic source have an unknown origin in 30-40% of cases. Mechanical thrombectomy for acute large vessel occlusion stroke has provided us with a method to directly retrieve the thrombi from patients for analysis. By collecting stroke-causing thrombi from known sources, we can then use high-throughput RNA sequencing (RNAseq) technology to directly measure the gene expression signatures of these clots. This may allow us to identify genetic markers to predict the cause of cryptogenic embolism. METHODS This is a prospective study in which RNAseq was used to analyze cerebral thrombi retrieved by mechanical thrombectomy devices in acute ischemic stroke patients. Samples were separated into two groups based on known stroke thrombus etiology, including Carotid group (patients with ipsilateral >70% carotid stenosis) and Atrial fibrillation (AF) group (patients with atrial fibrillation). Gene expression was compared by RNAseq analysis between the groups. RESULTS From October 2016 to September 2017, 8 thrombi (4 in Carotid group, 4 in Afib group) were included in this study. There were 131 genes that were significantly up- or down-regulated between the two groups defined as a false discovery rate ≤ 0.05 and a fold change ≥ 2. Twenty-six genes were selected as candidate gene biomarkers based on the criteria in the methods section. Candidate genes HSPA1B, which encodes a heatshock protein, and GPRC5B, which encodes a G-protein, showed the greatest fold differences in expression between the two groups. CONCLUSION This study has shown that RNA sequencing of acute ischemic stroke thrombi is feasible and indentified potential novel biomarkers for identifying stroke-causing thrombi origin, especially in cryptogenic stroke.
Collapse
Affiliation(s)
| | - Karen E Bates
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alyssa Toledo
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin Ramdas
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mitsuyoshi Watanabe
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Luis Guada
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dileep Yavagal
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
4
|
Scharf MM, Humphrys LJ, Berndt S, Di Pizio A, Lehmann J, Liebscher I, Nicoli A, Niv MY, Peri L, Schihada H, Schulte G. The dark sides of the GPCR tree - research progress on understudied GPCRs. Br J Pharmacol 2024. [PMID: 38339984 DOI: 10.1111/bph.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms. This review gives an overview of the current state of knowledge for each of the diverse subfamilies of understudied receptors regarding their physiological relevance, molecular mechanisms, endogenous ligands and pharmacological tools. Furthermore, it identifies some of the largest knowledge gaps that should be addressed in the foreseeable future and lists some general strategies that might be helpful in this process.
Collapse
Affiliation(s)
- Magdalena M Scharf
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Juliane Lehmann
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hannes Schihada
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gunnar Schulte
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| |
Collapse
|
5
|
Zhao N, Yu X, Zhu X, Song Y, Gao F, Yu B, Qu A. Diabetes Mellitus to Accelerated Atherosclerosis: Shared Cellular and Molecular Mechanisms in Glucose and Lipid Metabolism. J Cardiovasc Transl Res 2024; 17:133-152. [PMID: 38091232 DOI: 10.1007/s12265-023-10470-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 02/28/2024]
Abstract
Diabetes is one of the critical independent risk factors for the progression of cardiovascular disease, and the underlying mechanism regarding this association remains poorly understood. Hence, it is urgent to decipher the fundamental pathophysiology and consequently provide new insights into the identification of innovative therapeutic targets for diabetic atherosclerosis. It is now appreciated that different cell types are heavily involved in the progress of diabetic atherosclerosis, including endothelial cells, macrophages, vascular smooth muscle cells, dependence on altered metabolic pathways, intracellular lipids, and high glucose. Additionally, extensive studies have elucidated that diabetes accelerates the odds of atherosclerosis with the explanation that these two chronic disorders share some common mechanisms, such as endothelial dysfunction and inflammation. In this review, we initially summarize the current research and proposed mechanisms and then highlight the role of these three cell types in diabetes-accelerated atherosclerosis and finally establish the mechanism pinpointing the relationship between diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xiaoting Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xinxin Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Yanting Song
- Department of Pathology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| |
Collapse
|
6
|
Ellermann SF, Jongman RM, Luxen M, Kuiper T, Plantinga J, Moser J, Scheeren TWL, Theilmeier G, Molema G, Van Meurs M. Pharmacological inhibition of protein tyrosine kinases axl and fyn reduces TNF-α-induced endothelial inflammatory activation in vitro. Front Pharmacol 2022; 13:992262. [PMID: 36532777 PMCID: PMC9750991 DOI: 10.3389/fphar.2022.992262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Major surgery induces systemic inflammation leading to pro-inflammatory activation of endothelial cells. Endothelial inflammation is one of the drivers of postoperative organ damage, including acute kidney injury Tumour Necrosis Factor alpha (TNF-α) is an important component of surgery-induced pro-inflammatory activation of endothelial cells. Kinases, the backbone of signalling cascades, can be targeted by pharmacological inhibition. This is a promising treatment option to interfere with excessive endothelial inflammation. In this study, we identified activated kinases as potential therapeutic targets. These targets were pharmacologically inhibited to reduce TNF-α-induced pro-inflammatory signalling in endothelial cells. Kinome profiling using PamChip arrays identified 64 protein tyrosine kinases and 88 serine-threonine kinases, the activity of which was determined at various timepoints (5-240 min) following stimulation with 10 ng/ml TNF-α in Human umbilical vein endothelial cells in vitro. The PTKs Axl and Fyn were selected based on high kinase activity profiles. Co-localisation experiments with the endothelial-specific protein CD31 showed Axl expression in endothelial cells of glomeruli and Fyn in arterioles and glomeruli of both control and TNF-α-exposed mice. Pharmacological inhibition with Axl inhibitor BMS-777607 and Fyn inhibitor PP2 significantly reduced TNF-α-induced pro-inflammatory activation of E-selectin, VCAM-1, ICAM-1, IL-6 and IL-8 at mRNA and VCAM-1, ICAM-1, and IL-6 at protein level in HUVEC in vitro. Upon pharmacological inhibition with each inhibitor, leukocyte adhesion to HUVEC was also significantly reduced, however to a minor extent. In conclusion, pre-treatment of endothelial cells with kinase inhibitors BMS-777607 and PP2 reduces TNF-α-induced endothelial inflammation in vitro.
Collapse
Affiliation(s)
- Sophie F. Ellermann
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Perioperative Inflammation and Infection, Department of Human Medicine, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Rianne M. Jongman
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matthijs Luxen
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Timara Kuiper
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Josee Plantinga
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jill Moser
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Thomas W. L. Scheeren
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gregor Theilmeier
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Perioperative Inflammation and Infection, Department of Human Medicine, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Grietje Molema
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matijs Van Meurs
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Fyn Signaling in Ischemia-Reperfusion Injury: Potential and Therapeutic Implications. Mediators Inflamm 2022; 2022:9112127. [PMID: 36157893 PMCID: PMC9499810 DOI: 10.1155/2022/9112127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke and is one of the leading causes of disability and death, with the incidence increasing each year. Fyn is a nonreceptor tyrosine kinase belonging to the Src family of kinases (SFKs), which is related to many normal and pathological processes of the nervous system, including neurodevelopment and disease progression. In recent years, more and more evidence suggests that Fyn may be closely related to cerebral ischemia-reperfusion, including energy metabolism disorders, excitatory neurotoxicity, intracellular calcium homeostasis, free radical production, and the activation of apoptotic genes. This paper reviews the role of Fyn in the pathological process of cerebral ischemia-reperfusion, including neuroexcitotoxicity and neuroinflammation, to explore how Fyn affects specific signal cascades and leads to cerebral ischemia-reperfusion injury. In addition, Fyn also promotes the production of superoxide and endogenous NO, so as to quickly react to produce peroxynitrite, which may also mediate cerebral ischemia-reperfusion injury, which is discussed in this paper. Finally, we revealed the treatment methods related to Fyn inhibitors and discussed its potential as a clinical treatment for ischemic stroke.
Collapse
|