1
|
Srivastava S, Anbiaee R, Houshyari M, Laxmi, Sridhar SB, Ashique S, Hussain S, Kumar S, Taj T, Akbarnejad Z, Taghizadeh-Hesary F. Amino acid metabolism in glioblastoma pathogenesis, immune evasion, and treatment resistance. Cancer Cell Int 2025; 25:89. [PMID: 40082966 PMCID: PMC11908050 DOI: 10.1186/s12935-025-03721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025] Open
Abstract
Glioblastoma (GBM) ranks among the most lethal primary tumors of the central nervous system. This is partly due to its complex intracellular metabolism and interactions with the surrounding tumor microenvironment (TME). Compelling evidence represents that altered amino acids (AAs) metabolism plays a crucial role in both areas. The role of AAs and their metabolites in glioma biology is an emerging topic. Therefore, this review was conducted to summarize the current knowledge about the molecular mechanisms by which AAs participate in the GBM pathogenesis. AAs can directly influence tumor progression by affecting tumor cell metabolism or indirectly by releasing bioactive agents through particular metabolic pathways. This review begins by examining the metabolic pathways of essential AAs, such as tryptophan, tyrosine, and phenylalanine, which contribute to synthesizing critical neurotransmitters and shape tumor metabolism signatures. We explore how these pathways impact tumor growth and immune modulation, focusing on how AAs and their metabolites can promote malignant properties in GBM cells. AAs also play a pivotal role in reprogramming the TME, contributing to immune evasion and resistance to therapy. The review further discusses how tumor metabolism signatures, influenced by AA metabolism, can enhance the immunosuppressive microenvironment, providing new avenues for targeted immunotherapies. Finally, we outline potential therapeutic strategies to modulate AA metabolism and emphasize critical opportunities for future research to improve GBM management.
Collapse
Affiliation(s)
- Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Robab Anbiaee
- Radio Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Houshyari
- Radio Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laxmi
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India
| | | | - Sumel Ashique
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, 711316, West Bengal, India
| | - Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Tahreen Taj
- Department of Pharmacology, Yenepoya Pharmacy college and research centre, Yenepoya (Deemed to be) university, Mangalore, 575018, India
| | - Zeinab Akbarnejad
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Nakatsura T, Takenouchi K, Kataoka J, Ito Y, Kikuchi S, Kinoshita H, Ohnuki K, Suzuki T, Tsukamoto N. Expression Profiles of Five Common Cancer Membrane Protein Antigens Collected for the Development of Cocktail CAR-T Cell Therapies Applicable to Most Solid Cancer Patients. Int J Mol Sci 2025; 26:2145. [PMID: 40076777 PMCID: PMC11900252 DOI: 10.3390/ijms26052145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Although CD19 CAR-T has been highly effective against B-cell blood cancers, there are few reports of successful treatments for solid cancers, probably because there are few protein antigens specifically expressed on the surface of the cancer cell membrane. The key to developing a groundbreaking CAR-T cell therapy effective against solid cancers is to "overcome the heterogeneity of cancer antigens". For this purpose, it is necessary to target multiple cancer antigens simultaneously. In this study, we performed immunohistochemical analysis of various solid cancer specimens using antibodies against ROBO1, EphB4, CLDN1, and LAT1 in addition to GPC3, which we have previously studied. These antigens were frequently expressed in various solid cancers but shown to be rarely expressed, with some exceptions, in non-cancerous normal organs adjacent to the cancer. Although ROBO1 and GPC3 are often expressed in cytoplasm, there are also cases in which they are expressed on the cell membrane depending on the type of cancer. On the other hand, it has been revealed that three antigens-EphB4, CLDN1, and LAT1-are frequently expressed only on the cell membrane of cancer cells in various solid cancers, suggesting that they may be ideal targets for CAR-T cell therapy.
Collapse
Affiliation(s)
- Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan; (K.T.); (J.K.); (Y.I.); (S.K.); (H.K.); (K.O.); (T.S.); (N.T.)
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Cheng X, Wang Y, Gong G, Shen P, Li Z, Bian J. Design strategies and recent development of bioactive modulators for glutamine transporters. Drug Discov Today 2024; 29:103880. [PMID: 38216118 DOI: 10.1016/j.drudis.2024.103880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Glutamine transporters are integral to the metabolism of glutamine in both healthy tissues and cancerous cells, playing a pivotal role in maintaining amino acid balance, synthesizing biomolecules, and regulating redox equilibrium. Their critical functions in cellular metabolism make them promising targets for oncological therapies. Recent years have witnessed substantial progress in the field of glutamine transporters, marked by breakthroughs in understanding of their protein structures and the discovery of novel inhibitors, prodrugs, and radiotracers. This review provides a comprehensive update on the latest advancements in modulators targeting the glutamine transporter, with special attention given to LAT1 and ASCT2. It also discusses innovative approaches in drug design aimed at these transporters.
Collapse
Affiliation(s)
- Xinying Cheng
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yezhi Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guangyue Gong
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiyu Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Jinlei Bian
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Xia P, Dubrovska A. CD98 heavy chain as a prognostic biomarker and target for cancer treatment. Front Oncol 2023; 13:1251100. [PMID: 37823053 PMCID: PMC10562705 DOI: 10.3389/fonc.2023.1251100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
The SLC3A2 gene encodes for a cell-surface transmembrane protein CD98hc (4F2). CD98hc serves as a chaperone for LAT1 (SLC7A5), LAT2 (SLC7A8), y+LAT1 (SLC7A7), y+LAT2 (SLC7A6), xCT (SLC7A11) and Asc1 (SLC7A10) providing their recruitment to the plasma membrane. Together with the light subunits, it constitutes heterodimeric transmembrane amino acid transporters. CD98hc interacts with other surface molecules, such as extracellular matrix metalloproteinase inducer CD147 (EMMPRIN) and adhesion receptors integrins, and regulates glucose uptake. In this way, CD98hc connects the signaling pathways sustaining cell proliferation and migration, biosynthesis and antioxidant defense, energy production, and stem cell properties. This multifaceted role makes CD98hc one of the critical regulators of tumor growth, therapy resistance, and metastases. Indeed, the high expression levels of CD98hc were confirmed in various tumor tissues, including head and neck squamous cell carcinoma, glioblastoma, colon adenocarcinoma, pancreatic ductal adenocarcinoma, and others. A high expression of CD98hc has been linked to clinical prognosis and response to chemo- and radiotherapy in several types of cancer. In this mini-review, we discuss the physiological functions of CD98hc, its role in regulating tumor stemness, metastases, and therapy resistance, and the clinical significance of CD98hc as a tumor marker and therapeutic target.
Collapse
Affiliation(s)
- Pu Xia
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
5
|
Nozaki S, Nakatani Y, Mawatari A, Hume WE, Doi H, Watanabe Y. In vitro evaluation of (S)-2-amino-3-[3-(2- 18F-fluoroethoxy)-4-iodophenyl]-2-methylpropanoic acid ( 18F-FIMP) as a positron emission tomography probe for imaging amino acid transporters. EJNMMI Res 2023; 13:36. [PMID: 37115356 PMCID: PMC10147893 DOI: 10.1186/s13550-023-00988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND (S)-2-amino-3-[3-(2-18F-fluoroethoxy)-4-iodophenyl]-2-methylpropanoic acid (18F-FIMP) as a promising PET probe for imaging the tumor-specific L-type amino acid transporter (LAT) 1. Our previous study revealed that 18F-FIMP had a higher affinity for LAT1 than for LAT2 abundantly expressed even in normal cells. 18F-FIMP showed high accumulation in LAT1-positive tumor tissues and low accumulation in inflamed lesions in tumor-bearing mice. However, the affinity of 18F-FIMP for other amino acid transporters was not determined yet. Here, we aimed to determine whether 18F-FIMP has affinity for other tumor-related amino acid transporters, such as sodium- and chloride-dependent neutral and basic amino acid transporter B(0 +) (ATB0,+), alanine serine cysteine transporter 2 (ASCT2), and cystine/glutamate transporter (xCT). PROCEDURES Cells overexpressing LAT1, ATB0,+, ASCT2, or xCT were established by the transfection of expression vectors for LAT1, ATB0,+, ASCT2, or xCT. Protein expression levels were determined by western blot and immunofluorescent analyses. Transport function was evaluated by a cell-based uptake assay using 18F-FIMP and 14C-labeled amino acids as substrates. RESULTS Intense signals were observed only for expression vector-transfected cells on western blot and immunofluorescent analyses. These signals were strongly reduced by gene-specific small interfering ribonucleic acid treatment. The uptake values for each 14C-labeled substrate were significantly higher in the transfected cells than in the mock-transfected cells and were significantly inhibited by the corresponding specific inhibitors. The 18F-FIMP uptake values were significantly higher in the LAT1- and ATB0,+-overexpressing cells than in the corresponding mock cells, but no such increase was seen in the ASCT2- or xCT-overexpressing cells. These 18F-FIMP uptake values were significantly decreased by the specific inhibitors for LAT1- and ATB0,+. CONCLUSIONS We demonstrated that 18F-FIMP has affinity not only for LAT1, but also for ATB0,+. Our results may be helpful for understanding the mechanisms of the whole-body distribution and tumor accumulation of 18F-FIMP.
Collapse
Affiliation(s)
- Satoshi Nozaki
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachiinamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
- Novel PET Diagnostics Laboratory, RIKEN Innovation Center, Hyogo, Japan
| | - Yuka Nakatani
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachiinamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Aya Mawatari
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - William Ewan Hume
- Novel PET Diagnostics Laboratory, RIKEN Innovation Center, Hyogo, Japan
| | - Hisashi Doi
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachiinamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
6
|
Tahara T, Takatani S, Tsuji M, Shibata N, Hosaka N, Inoue M, Ohno M, Ozaki D, Mawatari A, Watanabe Y, Doi H, Onoe H. Characteristic Evaluation of a 11C-Labeled Leucine Analog, l-α-[5- 11C]methylleucine, as a Tracer for Brain Tumor Imaging by Positron Emission Tomography. Mol Pharm 2023; 20:1842-1849. [PMID: 36802622 DOI: 10.1021/acs.molpharmaceut.2c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Amino acid transporters are upregulated in many cancer cells, and system L amino acid transporters (LAT1-4), in particular, LAT1, which preferentially transports large, neutral, and branched side-chain amino acids, are considered a primary target for cancer positron emission tomography (PET) tracer development. Recently, we developed a 11C-labeled leucine analog, l-α-[5-11C]methylleucine ([5-11C]MeLeu), via a continuous two-step reaction of Pd0-mediated 11C-methylation and microfluidic hydrogenation. In this study, we evaluated the characteristics of [5-11C]MeLeu and also compared the sensitivity to brain tumors and inflammation with l-[11C]methionine ([11C]Met) to determine its potential for brain tumor imaging. Competitive inhibition experiments, protein incorporation, and cytotoxicity experiments of [5-11C]MeLeu were performed in vitro. Further, metabolic analyses of [5-11C]MeLeu were performed using a thin-layer chromatogram. The accumulation of [5-11C]MeLeu in tumor and inflamed regions of the brain was compared with [11C]Met and 11C-labeled (S)-ketoprofen methyl ester by PET imaging, respectively. Transporter assay with various inhibitors revealed that [5-11C]MeLeu is mainly transported via system L amino acid transporters, especially LAT1, into A431 cells. The protein incorporation assay and metabolic assay in vivo demonstrated that [5-11C]MeLeu was neither used for protein synthesis nor metabolized. These results indicate that MeLeu is very stable in vivo. Furthermore, the treatment of A431 cells with various concentrations of MeLeu did not change their viability, even at high concentrations (∼10 mM). In brain tumors, the tumor-to-normal ratio of [5-11C]MeLeu was more elevated than that of [11C]Met. However, the accumulation levels of [5-11C]MeLeu were lower than those of [11C]Met (the standardized uptake value (SUV) of [5-11C]MeLeu and [11C]Met was 0.48 ± 0.08 and 0.63 ± 0.06, respectively). In brain inflammation, no significant accumulation of [5-11C]MeLeu was observed at the inflamed brain area. These data suggested that [5-11C]MeLeu was identified as a stable and safe agent for PET tracers and could help detect brain tumors, which overexpress the LAT1 transporter.
Collapse
Affiliation(s)
- Tsuyoshi Tahara
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Department of In Vivo Imaging, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, Tokushima 770-8503, Japan
| | - Shuhei Takatani
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mieko Tsuji
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Nina Shibata
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Nami Hosaka
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Michiko Inoue
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masahiro Ohno
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Daiki Ozaki
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Aya Mawatari
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hisashi Doi
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hirotaka Onoe
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Human Brain Research Center, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
7
|
Nozaki S, Nakatani Y, Mawatari A, Shibata N, Hume WE, Hayashinaka E, Wada Y, Doi H, Watanabe Y. Comparison of [ 18F]FIMP, [ 11C]MET, and [ 18F]FDG PET for early-phase assessment of radiotherapy response. Sci Rep 2023; 13:1961. [PMID: 36737550 PMCID: PMC9898523 DOI: 10.1038/s41598-023-29166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Several limitations of [18F]FDG have been reported, such as nonspecific uptake of inflammation foci. Moreover, [11C]MET has been found to accumulate in normal and inflammatory tissues as well as tumors. To increase specificity to tumor tissues, PET probes with tumor-specific molecular targets have been actively developed. [18F]FIMP was found to be highly accumulated in LAT1-positive tumors but not in inflamed tissue. The aim of this study was to explore whether [18F]FIMP can be used for the early-phase evaluation of radiotherapy accompanied by inflammation, and compare its effectiveness with those of [11C]MET and [18F]FDG. Tumor uptake of [18F]FIMP decreased at day 1 after irradiation, and remained low until day 14. Comparatively, that of [18F]FDG initially decreased at day 3 but was transiently elevated at day 7 and then decreased again at day 10. Decreased tumor uptake of [11C]MET was observed at day 10. In line with the uptake of [18F]FIMP, the ratio of Ki-67 immuno-positive cells in tumor tissues significantly decreased at day 1, 7, and 10 as compared with that in the control. These findings suggest that [18F]FIMP may be a PET probe involved in the early detection and prediction of radiotherapy efficacy, although further clarification is needed.
Collapse
Affiliation(s)
- Satoshi Nozaki
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.,Novel PET Diagnostics Laboratory, RIKEN Innovation Center, Kobe, Hyogo, Japan
| | - Yuka Nakatani
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Aya Mawatari
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Nina Shibata
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - William E Hume
- Novel PET Diagnostics Laboratory, RIKEN Innovation Center, Kobe, Hyogo, Japan
| | - Emi Hayashinaka
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Yasuhiro Wada
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Hisashi Doi
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
8
|
Elkawad H, Xu Y, Tian M, Jin C, Zhang H, Yu K, He Q. Recent advances in microfluidic devices for radiosynthesis of PET‐imaging probes. Chem Asian J 2022; 17:e202200579. [PMID: 35909081 DOI: 10.1002/asia.202200579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Husamelden Elkawad
- The second affiliated hospital of Zhejiang University Nuclear Medicine and PET center CHINA
| | - Yangyang Xu
- Zhejiang University b. College of Chemical & Biological Engineering CHINA
| | - Mei Tian
- The second affiliated hospital of Zhejiang University Nuclear Medicine & PET center CHINA
| | - Chenyang Jin
- Zhejiang University b. College of Chemical & Biological Engineering CHINA
| | - Hong Zhang
- The second affiliated hospital of Zhejiang University b. College of Chemical & Biological Engineering CHINA
| | - Kaiwu Yu
- Zhejiang University b. College of Chemical & Biological Engineering CHINA
| | - Qinggang He
- Zhejiang University Chemical Engineering 38 Zheda Rd. 310027 Hangzhou CHINA
| |
Collapse
|
9
|
Sowers ML, Sowers LC. Glioblastoma and Methionine Addiction. Int J Mol Sci 2022; 23:7156. [PMID: 35806160 PMCID: PMC9266821 DOI: 10.3390/ijms23137156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma is a fatal brain tumor with a bleak prognosis. The use of chemotherapy, primarily the alkylating agent temozolomide, coupled with radiation and surgical resection, has provided some benefit. Despite this multipronged approach, average patient survival rarely extends beyond 18 months. Challenges to glioblastoma treatment include the identification of functional pharmacologic targets as well as identifying drugs that can cross the blood-brain barrier. To address these challenges, current research efforts are examining metabolic differences between normal and tumor cells that could be targeted. Among the metabolic differences examined to date, the apparent addiction to exogenous methionine by glioblastoma tumors is a critical factor that is not well understood and may serve as an effective therapeutic target. Others have proposed this property could be exploited by methionine dietary restriction or other approaches to reduce methionine availability. However, methionine links the tumor microenvironment with cell metabolism, epigenetic regulation, and even mitosis. Therefore methionine depletion could result in complex and potentially undesirable responses, such as aneuploidy and the aberrant expression of genes that drive tumor progression. If methionine manipulation is to be a therapeutic strategy for glioblastoma patients, it is essential that we enhance our understanding of the role of methionine in the tumor microenvironment.
Collapse
Affiliation(s)
- Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA;
- MD-PhD Combined Degree Program, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Lawrence C. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA;
- Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| |
Collapse
|