1
|
Liu Z, Jin X, Miao Y, Wang P, Gu Y, Shangguan X, Chen L, Wang G. Identification and Characterization of C-Mos in Pearl Mussel Hyriopsis cumingii and Its Role in Gonadal Development. Biomolecules 2023; 13:931. [PMID: 37371511 DOI: 10.3390/biom13060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
C-Mos, a proto-oncogene, regulates oocyte maturation by activating the classical MAPK pathway in cells. To examine the function of C-Mos in Hyriopsis cumingii, C-Mos was identified in this study. The full-length cDNA of C-Mos was 2213 bp, including 144 bp in the 5' UTR, 923 bp in 3' the UTR, and 1146 bp in the open reading frame (ORF) region. During early gonad development, the expression of C-Mos from 4 to 6 months of age in H. cumingii was significantly higher than that in other months, with the highest expression in 6-month-old H. cumingii, suggesting that C-Mos may be involved in early gonadal development in H. cumingii. Clear hybridization signals were found by in situ hybridization in the oocytes, oocyte nucleus and oogonium, and a small number of hybridization signals were found in the follicular wall of the male gonads. In addition, the C-Mos RNA interference (RNAi) assay results showed that the knockdown of C-Mos caused a down-regulation of ERK and P90rsk. In summary, these results indicate that C-Mos has a crucial part to play in gonadal development in H. cumingii.
Collapse
Affiliation(s)
- Zongyu Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Xin Jin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Yulin Miao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Ping Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Yang Gu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Xiaozhao Shangguan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Lijing Chen
- Shanghai Vocational College of Agriculture and Forestry, Shanghai 201699, China
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| |
Collapse
|
2
|
Tantiwisawaruji S, Rocha MJ, Silva A, Pardal MA, Kovitvadhi U, Rocha E. A Stereological Study of the Three Types of Ganglia of Male, Female, and Undifferentiated Scrobicularia plana (Bivalvia). Animals (Basel) 2022; 12:ani12172248. [PMID: 36077968 PMCID: PMC9454602 DOI: 10.3390/ani12172248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/03/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Neurotransmitters modulate gonadal maturation in bivalves. However, it remains unclear whether there are differences in the nervous system structure between sexes, maturation, and ganglia. Therefore, a stereological study was conducted on the ganglia of adult peppery furrow shell (Scrobicularia plana). Equal-sized males, females, and undifferentiated (gamete absence) animals were fixed with 10% formalin and processed for light microscopy. They were serially cut into 35 µm paraffin thick sections and stained with hematoxylin-eosin. Sections with cerebral (cerebropleural), pedal, and visceral ganglia were studied. The parameters estimated were the volumes of the ganglia, the total and relative volumes of their cortex (outer layer) and medulla (neuropil), and the total number of cells (neurons, glia, and pigmented) per ganglia and compartment. The volumes and numbers were estimated, respectively, by the Cavalieri principle and by the optical fractionator. Females show a larger glia to neuron numerical ratio. Further, females have a greater ganglionic volume than undifferentiated adults, with males showing intermediate values. These facts indicate that the ganglia size is related somehow to maturation. The cell size forms the basis of the differences because total cellularity is equal among the groups. The three ganglion types differ in total volumes and the volume ratio of the cortex versus the medulla. The greater volumes of the pedal ganglia (vis-a-vis the cerebral ones) and of the visceral ganglia (in relation to all others) imply more voluminous cortexes and medullae, but more neuronal and non-neuronal cells only in the visceral. The new fundamental data can help interpret bivalve neurophysiology.
Collapse
Affiliation(s)
- Sukanlaya Tantiwisawaruji
- Learning Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (U.Porto), 4050-313 Porto, Portugal
- Histomorphology, Physiopathology and Applied Toxicology Group, CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto (U.Porto), 4450-208 Matosinhos, Portugal
| | - Maria J. Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (U.Porto), 4050-313 Porto, Portugal
- Histomorphology, Physiopathology and Applied Toxicology Group, CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto (U.Porto), 4450-208 Matosinhos, Portugal
| | - Ana Silva
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (U.Porto), 4050-313 Porto, Portugal
| | - Miguel A. Pardal
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Uthaiwan Kovitvadhi
- Department of Zoology, Faculty of Science, Kasetsart University (KU), Bangkok 10900, Thailand
| | - Eduardo Rocha
- Learning Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (U.Porto), 4050-313 Porto, Portugal
- Histomorphology, Physiopathology and Applied Toxicology Group, CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto (U.Porto), 4450-208 Matosinhos, Portugal
- Correspondence:
| |
Collapse
|