1
|
Zheng H, Cao Z, Lv Y, Cai X. WTAP-mediated N6-methyladenine Modification of circEEF2 Promotes Lung Adenocarcinoma Tumorigenesis by Stabilizing CANT1 in an IGF2BP2-dependent Manner. Mol Biotechnol 2025; 67:1494-1508. [PMID: 38619801 DOI: 10.1007/s12033-024-01134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 04/16/2024]
Abstract
N6-methyladenosine (m6A) is a common posttranscriptional RNA modification and plays an important role in cancer biology. Circular RNAs (circRNAs) are also reported to participate in lung adenocarcinoma (LUAD) progression. Here, we aimed to investigate the functions of Wilms tumor 1-associating protein (WTAP) methyltransferase and circEEF2 in LUAD cell tumorigenesis, and probe whether circEEF2 functioned through WTAP-induced m6A modification and its potential mechanisms. Functional analyses were conducted by tube formation, sphere formation, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and transwell assays in vitro as well as tumor formation experiments in mice, respectively. The N6-methyladenine (m6A) modification in circEEF2 mRNA was determined by RNA immunoprecipitation (Me-RIP) assay. The interaction between IGF2BP2 (Insulin Like Growth Factor 2 MRNA-Binding Protein 2) and circEEF2 or Calcium-activated nucleotidase 1 (CANT1) mRNA was confirmed using RIP assay. LUAD tissues and cells showed high circEEF2 expression, and the deficiency of circEEF2 suppressed LUAD cell angiogenesis, stemness, proliferation, migration, and invasion. WTAP induced circEEF2 m6A modification. WTAP silencing repressed the oncogenic phenotypes of LUAD cells via stabilizing circEEF2 in an m6A-dependent manner. IGF2BP2 interacted with circEEF2 and CANT1, and WTAP and circEEF2 could regulate CANT1 expression through IGF2BP2. The inhibition of LUAD cell oncogenic phenotypes caused by circEEF2 deficiency was abolished by CANT1 overexpression. In addition, WTAP silencing impeded LUAD growth via modulating circEEF2 and CANT1 in vivo. WTAP-mediated m6A modification of circEEF2 promotes lung adenocarcinoma growth and tumorigenesis by stabilizing CANT1 through IGF2BP2.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Respiratory and Critical Care Medicine, Lishui People's Hospital, 15, Dazhong Street, Liandu District 323000, Lishui City, Zhejiang Province, China
| | - Zhuo Cao
- Department of Respiratory and Critical Care Medicine, Lishui People's Hospital, 15, Dazhong Street, Liandu District 323000, Lishui City, Zhejiang Province, China
| | - Yuankai Lv
- Department of Respiratory and Critical Care Medicine, Lishui People's Hospital, 15, Dazhong Street, Liandu District 323000, Lishui City, Zhejiang Province, China
| | - Xiaoping Cai
- Department of Respiratory and Critical Care Medicine, Lishui People's Hospital, 15, Dazhong Street, Liandu District 323000, Lishui City, Zhejiang Province, China.
| |
Collapse
|
2
|
Zhi Y, Liu S, Chang X, Guan W, Li R, Liu Q, Chen J, Ling J, Zhao X, Liu A, Chen J, Zhang X, Huang Y. M6A Methylation Regulators METTL3 and ALKBH5 are Risk Factors for EGFR-Mutant NSCLC. Cancer Control 2025; 32:10732748251342685. [PMID: 40381190 PMCID: PMC12085754 DOI: 10.1177/10732748251342685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/19/2025] Open
Abstract
IntroductionNon-small cell lung cancer (NSCLC), which accounts for >85% of all lung cancers, is the most common solid malignant tumor, with high morbidity and mortality worldwide. Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treatment is widely used clinically because the epidermal growth factor receptor (EGFR) is the main driver gene of lung cancer; however, the development of drug resistance is inevitable. Epigenetic abnormalities can also lead to tyrosine kinase inhibitor (TKI) resistance. However, the relationship between N6-methyladenosine (m6A)-related proteins and EGFR mutations in NSCLC and their clinical significance remain unclear. In this retrospective study, the expression of m6A-related regulatory factors in patients with EGFR mutations were analyzed to investigate their relationship with clinicopathological features and prognoses.MethodsThe association between m6A-related regulatory factors and NSCLC was analyzed using data derived from The Cancer Genome Atlas, case collection, follow-up, immunohistochemistry, and scoring.ResultsA total of 246 NSCLC specimens were examined in this study. Among these, 143 EGFR-mutant cases exhibited significantly higher expression of METTL3 and ALKBH5 compared to EGFR-wildtype specimens. The median progression-free survival time of patients with high METTL3 expression (SI >6) was 25.0 months, and that of patients with high ALKBH5 expression (SI >6) was 24.1 months in EGFR-mutant cases. High METTL3 and ALKBH5 expression levels are independent risk factors for progression-free survival in patients with EGFR mutations. The median progression-free survival time of patients with EGFR mutations was 45.7 months in those with high expression of METTL3 or ALKBH5 alone, whereas it decreased to 20.1 months in those with high simultaneous expression of METTL3 and ALKBH5.ConclusionsMETTL3 and ALKBH5 were upregulated in NSCLC tissues with EGFR mutations and significantly correlated with poor prognoses. Thus, METTL3 and ALKBH5 may serve as prognostic biomarkers in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Yaofeng Zhi
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, China
| | - Silin Liu
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, China
- Department of Pulmonary and Critical Care Medicine, Jiangmen Central Hospital, China
| | - Xuefei Chang
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, China
- Department of Pulmonary and Critical Care Medicine, Jiangmen Central Hospital, China
| | - Wanxian Guan
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, China
- Department of Pulmonary and Critical Care Medicine, Jiangmen Central Hospital, China
| | - Ronggang Li
- Department of Pathology, Jiangmen Central Hospital, China
| | - Qiongru Liu
- Department of Pathology, Jiangmen Central Hospital, China
| | - Jiaqing Chen
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, China
| | - Jie Ling
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, China
| | - Xulin Zhao
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, China
| | - Aibin Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiarong Chen
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, China
- Department of Oncology, Jiangmen Central Hospital, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, China
| | - Yanming Huang
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, China
- Department of Pathology, Jiangmen Central Hospital, China
| |
Collapse
|
3
|
Liu C, Gao F, Yang J, Liu C, Tian Z. Wilms' Tumor 1-Associating Protein Promotes Nonsmall-Cell Lung Cancer Through the Expression of Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5. Am J Clin Oncol 2024; 47:465-474. [PMID: 38898559 DOI: 10.1097/coc.0000000000001116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
OBJECTIVE This study aimed to analyze the functional roles and molecular mechanism of Wilms' tumor 1-associating protein (WTAP) in the tumorigenesis of nonsmall-cell lung cancer (NSCLC). METHODS Retrospective analysis was used. Tumor tissues and surrounding nontumor tissues of 150 patients with NSCLS who were surgically resected in the Fourth Hospital of Hebei Medical University from January 2016 to January 2018 were selected. The expression of WTAP in NSCLC tissues was detected by immunohistochemistry. Clinicopathologic parameters were then subjected to univariate and multivariate Cox regression analysis in purpose of uncovering the independent risk factors for overall survival time. MTS (3-[4,5-dimethylthiazol-zyl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazoliuzolium, inner salt) assay, colony formation assay, and transwell assays were performed to estimate cell proliferation, migration, and invasion. Meanwhile, the relationship between WTAP and the cell migration and invasion marker-related proteins were evaluated by Western blot analysis and RT-qPCR. WTAP expression was knocked-down in cell lines by shRNA, and RNA-Seq was performed to investigate the pathways regulated by WTAP. RESULTS In NSCLC patients, WTAP was highly expressed in tumor tissues and the higher expression was significantly associated with poor overall survival (OS) ( P <0.01). Compared with the control group in vitro, the overexpression of WTAP could significantly promote cell proliferation, migration, and invasion ( P <0.01), while knock-down WTAP significantly reduces the above effects ( P <0.01). In a mouse orthotopic implantation model, higher WTAP abundance could significantly promote tumor enlargement compared with the control group ( P <0.01). Compared with the control group, the knock-down of WTAP significantly inhibit the expression of carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in cell lines ( P <0.01). Besides, in NSCLC, knocked-down CEACAM5 significantly reduced the impact of WTAP on cell proliferation, migration, and invasion compared with the control group ( P <0.05). CONCLUSIONS This study suggests that high expression of WTAP was associated with poor clinical outcomes. CEACAM5 may play a synergistic role with WTAP to jointly promote NSCLC progression by enhancing cell proliferation, invasion, and migration.
Collapse
Affiliation(s)
- Changjiang Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Feng Gao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jie Yang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chengang Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ziqiang Tian
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Wang D, Zu Y, Sun W, Fan X. SETD1A-mediated Methylation of H3K4me3 Inhibits Ferroptosis in Non-small Cell Lung Cancer by Regulating the WTAPP1/WTAP Axis. Curr Med Chem 2024; 31:3217-3231. [PMID: 37231753 DOI: 10.2174/0929867330666230525143252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION SETD1A is upregulated in non-small cell lung cancer (NSCLC) tissues. This study investigated the molecular mechanism of the SETD1A/WTAPP1/WTAP axis in NSCLC. METHODS Ferroptosis is a unique cell death mode driven by iron-reliant phospholipid peroxidation, which is regulated by multiple cellular metabolic pathways, including REDOX homeostasis, iron metabolism, mitochondrial activity and metabolism of amino acids, lipids and sugars. Thus, the levels of ferroptosis markers (MDA, SOD, GSH) were measured in vitro, and NSCLC cell behaviors were assessed. SETD1A-mediated H3K4me3 methylation was analyzed. SETD1A-exerted effects on ferroptosis and tumor growth in vivo were verified in nude mouse models. RESULTS SETD1A was highly expressed in NSCLC cells. Silencing SETD1A suppressed NSCLC cell proliferation and migration, inhibited MDA, and enhanced GPX4, SOD, and GSH levels. SETD1A elevated WTAP expression through WTAPP1 upregulation by mediating H3K4me3 methylation in the WTAPP1 promoter region. WTAPP1 overexpression partly averted the promotional effect of silencing SETD1A on NSCLC cell ferroptosis. WTAP interference abrogated the inhibitory effects of WTAPP1 on NSCLC cell ferroptosis. Silencing SETD1A facilitated ferroptosis and accelerated tumor growth in nude mice through the WTAPP1/WTAP axis. CONCLUSION SETD1A amplified WTAP expression through WTAPP1 upregulation by mediating H3K4me3 modification in the WTAPP1 promoter region, thus promoting NSCLC cell proliferation and migration and inhibiting ferroptosis.
Collapse
Affiliation(s)
- Dao Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China
| | - Yukun Zu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China
| | - Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China
| | - Xiaowu Fan
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China
| |
Collapse
|
5
|
Sun Q, Liu R, Zhang H, Zong L, Jing X, Ma L, Li J, Zhang L. Fascin actin-bundling protein 1 regulates non-small cell lung cancer progression by influencing the transcription and splicing of tumorigenesis-related genes. PeerJ 2023; 11:e16526. [PMID: 38077434 PMCID: PMC10704988 DOI: 10.7717/peerj.16526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023] Open
Abstract
Background High mortality rates are prevalent among patients with non-small-cell lung cancer (NSCLC), and effective therapeutic targets are key prognostic factors. Fascin actin-bundling protein 1 (FSCN1) promotes NSCLC; however, its role as an RNA-binding protein in NSCLC remains unexplored. Therefore, we aimed to explore FSCN1 expression and function in A549 cells. Method We screened for alternative-splicing events and differentially expressed genes (DEGs) after FSCN1 silence via RNA-sequencing (RNA-seq). FSCN1 immunoprecipitation followed by RNA-seq were used to identify target genes whose mRNA expression and pre-mRNA alternative-splicing levels might be influenced by FSCN1. Results Silencing FSCN1 in A549 cells affected malignant phenotypes; it inhibited proliferation, migration, and invasion, and promoted apoptosis. RNA-seq analysis revealed 2,851 DEGs and 3,057 alternatively spliced genes. Gene ontology-based functional enrichment analysis showed that downregulated DEGs and alternatively splicing genes were enriched for the cell-cycle. FSCN1 promoted the alternative splicing of cell-cycle-related mRNAs involved in tumorigenesis (i.e., BCCIP, DLGAP5, PRC1, RECQL5, WTAP, and SGO1). Combined analysis of FSCN1 RNA-binding targets and RNA-seq data suggested that FSCN1 might affect ACTG1, KRT7, and PDE3A expression by modulating the pre-mRNA alternative-splicing levels of NME4, NCOR2, and EEF1D, that were bound to long non-coding RNA transcripts (RNASNHG20, NEAT1, NSD2, and FTH1), which were highly abundant. Overall, extensive transcriptome analysis of gene alternative splicing and expression levels was performed in cells transfected with FSCN1 short-interfering RNA. Our data provide global insights into the regulatory mechanisms associated with the roles of FSCN1 and its target genes in lung cancer.
Collapse
Affiliation(s)
- Qingchao Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Ruixue Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Haiping Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Liang Zong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Xiaoliang Jing
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Long Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Jie Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Liwei Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| |
Collapse
|
6
|
Li H, Li C, Zhang B, Jiang H. Lactoferrin suppresses the progression of colon cancer under hyperglycemia by targeting WTAP/m 6A/NT5DC3/HKDC1 axis. J Transl Med 2023; 21:156. [PMID: 36855062 PMCID: PMC9972781 DOI: 10.1186/s12967-023-03983-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Although the relationship between type 2 diabetes (T2D) and the increased risk of colorectal carcinogenesis is widely defined in clinical studies, the therapeutic methods and molecular mechanism of T2D-induced colon cancer and how does hyperglycemia affect the progression is still unknown. Here, we studied the function of lactoferrin (LF) in suppressing the progression of colon cancer in T2D mice, and uncovered the related molecular mechanisms in DNA 5mC and RNA m6A levels. METHODS We examined the effects of LF (50% iron saturation) on the migration and invasion of colon tumor cells under high concentration of glucose. Then, transcriptomics and DNA methylation profilings of colon tumor cells was co-analyzed to screen out the special gene (NT5DC3), and the expression level of NT5DC3 in 75 clinical blood samples was detected by q-PCR and western blot, to investigate whether NT5DC3 was a biomarker to distinguish T2D patients and T2D-induced colon cancer patients from healthy volunteers. Futhermore, in T2D mouse with xenografted colon tumor models, the inhibitory effects of LF and NT5DC3 protein on colon tumors were investigated. In addition, epigenetic alterations were measured to examine the 5mC/m6A modification sites of NT5DC3 regulated by LF. Utilizing siRNA fragments of eight m6A-related genes, the special gene (WTAP) regulating m6A of NT5DC was proved, and the effect of LF on WTAP/NT5DC3/HKDC1 axis was finally evaluated. RESULTS A special gene NT5DC3 was screened out through co-analysis of transcriptomics and DNA methylation profiling, and HKDC1 might be a downstream sensor of NT5DC3. Mechanistically, LF-dependent cellular DNA 5mC and RNA m6A profiling remodeling transcriptionally regulate NT5DC3 expression. WTAP plays a key role in regulating NT5DC3 m6A modification and subsequently controls NT5DC3 downstream target HKDC1 expression. Moreover, co-treatment of lactoferrin and NT5DC3 protein restrains the growth of colon tumors by altering the aberrant epigenetic markers. Strikingly, clinical blood samples analysis demonstrates NT5DC3 protein expression is required to direct the distinction of T2D or T2D-induced colon cancer with healthy humans. CONCLUSIONS Together, this study reveals that lactoferrin acts as a major factor to repress the progression of colon cancer under hyperglycemia, thus, significantly expanding the landscape of natural dietary mediated tumor suppression.
Collapse
Affiliation(s)
- Huiying Li
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Chaonan Li
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Boyang Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Hongpeng Jiang
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| |
Collapse
|
7
|
Heliez L, Ricordel C, Becuwe P, Pedeux R. Newly identified tumor suppressor functions of ING proteins. Curr Opin Pharmacol 2023; 68:102324. [PMID: 36521226 DOI: 10.1016/j.coph.2022.102324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022]
Abstract
The INhibitor of Growth (ING) proteins (ING1, ING2, ING3, ING4 and ING5) are a family of epigenetic regulators. Their decreased expression in numerous cancers led to identifying the ING proteins as gatekeeper tumor suppressors as they regulate cell cycle progression, apoptosis and senescence. Subsequently, they were also described as caretaker tumor suppressors through their involvement in DNA replication and the DNA damage response (DDR). Recent studies have identified new interactions of the ING proteins with proteins or pathways implicated in cell proliferation, the maintenance of stem cells pluripotency or the DDR. Furthermore, the ING proteins have been identified as regulators of ribosomal RNA synthesis and of mRNA stability and as regulators of mitochondrial DNA transcription resulting in the regulation of metabolism. These new findings highlight new antitumorigenic activities of the ING proteins that are potential targets for cancer treatment.
Collapse
Affiliation(s)
- Léane Heliez
- Univ Rennes 1, INSERM, OSS (Oncogenesis Stress Signaling), UMR_S 1242, CLCC Eugene Marquis, F-35000, Rennes, France
| | - Charles Ricordel
- Univ Rennes 1, INSERM, OSS (Oncogenesis Stress Signaling), UMR_S 1242, CLCC Eugene Marquis, F-35000, Rennes, France; Service de Pneumologie, CHU de Rennes, Rennes, France
| | - Philippe Becuwe
- Univ Rennes 1, INSERM, OSS (Oncogenesis Stress Signaling), UMR_S 1242, CLCC Eugene Marquis, F-35000, Rennes, France; Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy CEDEX, France
| | - Rémy Pedeux
- Univ Rennes 1, INSERM, OSS (Oncogenesis Stress Signaling), UMR_S 1242, CLCC Eugene Marquis, F-35000, Rennes, France.
| |
Collapse
|
8
|
Shi Q, Han S, Liu X, Wang S, Ma H. Integrated single-cell and transcriptome sequencing analyses determines a chromatin regulator-based signature for evaluating prognosis in lung adenocarcinoma. Front Oncol 2022; 12:1031728. [PMID: 36324565 PMCID: PMC9618736 DOI: 10.3389/fonc.2022.1031728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/28/2022] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Accumulating evidence has highlighted the significance of chromatin regulator (CR) in pathogenesis and progression of cancer. However, the prognostic role of CRs in LUAD remains obscure. We aim to detect the prognostic value of CRs in LUAD and create favorable signature for assessing prognosis and clinical value of LUAD patients. METHODS The mRNA sequencing data and clinical information were obtained from TCGA and GEO databases. Gene consensus clustering analysis was utilized to determine the molecular subtype of LUAD. Cox regression methods were employed to set up the CRs-based signature (CRBS) for evaluating survival rate in LUAD. Biological function and signaling pathways were identified by KEGG and GSEA analyses. In addition, we calculated the infiltration level of immunocyte by CIBERSORT algorithm. The expressions of model hub genes were detected in LUAD cell lines by real-time polymerase chain reaction (PCR). RESULTS KEGG analysis suggested the CRs were mainly involved in histone modification, nuclear division and DNA modification. Consensus clustering analysis identified a novel CRs-associated subtype which divided the combined LUAD cohort into two clusters (C1 = 217 and C2 = 296). We noticed that a remarkable discrepancy in survival rate among two clusters. Then, a total of 120 differentially expressed CRs were enrolled into stepwise Cox analyses. Four hub CRs (CBX7, HMGA2, NPAS2 and PRC1) were selected to create a risk signature which could accurately forecast patient outcomes and differentiate patient risk. GSEA unearthed that mTORC1 pathway, PI3K/Akt/mTOR and p53 pathway were greatly enriched in CRBS-high cohort. Moreover, the infiltration percentages of macrophage M0, macrophage M2, resting NK cells, memory B cells, dendritic cells and mast cells were statistically significantly different in the two groups. PCR assay confirmed the differential expression of four model biomarkers. CONCLUSIONS Altogether, our project developed a robust risk signature based on CRs and offered novel insights into individualized treatment for LUAD cases.
Collapse
Affiliation(s)
- Qingtong Shi
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Song Han
- Department of Thoracic Surgery, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Xiong Liu
- Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
- Graduate School of Dalian Medical University, Dalian, China
| | - Saijian Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
- Graduate School of Dalian Medical University, Dalian, China
| | - Haitao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Fan Y, Li X, Sun H, Gao Z, Zhu Z, Yuan K. Role of WTAP in Cancer: From Mechanisms to the Therapeutic Potential. Biomolecules 2022; 12:biom12091224. [PMID: 36139062 PMCID: PMC9496264 DOI: 10.3390/biom12091224] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Wilms' tumor 1-associating protein (WTAP) is required for N6-methyladenosine (m6A) RNA methylation modifications, which regulate biological processes such as RNA splicing, cell proliferation, cell cycle, and embryonic development. m6A is the predominant form of mRNA modification in eukaryotes. WTAP exerts m6A modification by binding to methyltransferase-like 3 (METTL3) in the nucleus to form the METTL3-methyltransferase-like 14 (METTL14)-WTAP (MMW) complex, a core component of the methyltransferase complex (MTC), and localizing to the nuclear patches. Studies have demonstrated that WTAP plays a critical role in various cancers, both dependent and independent of its role in m6A modification of methyltransferases. Here, we describe the recent findings on the structural features of WTAP, the mechanisms by which WTAP regulates the biological functions, and the molecular mechanisms of its functions in various cancers. By summarizing the latest WTAP research, we expect to provide new directions and insights for oncology research and discover new targets for cancer treatment.
Collapse
Affiliation(s)
- Yongfei Fan
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
- Heart and Lung Disease Laboratory, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Xinwei Li
- Department of Gastroenterology, Affiliated Cancer Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Huihui Sun
- Department of Radiotherapy, The Affiliated Changzhou No. 1 People’s Hospital of Suzhou University, Changzhou 213003, China
| | - Zhaojia Gao
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
- Heart and Lung Disease Laboratory, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Zheng Zhu
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
- Heart and Lung Disease Laboratory, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Kai Yuan
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
- Heart and Lung Disease Laboratory, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
- Correspondence:
| |
Collapse
|