1
|
Dong R, Wang J, Guan R, Sun J, Jin P, Shen J. Role of Oxidative Stress in the Occurrence, Development, and Treatment of Breast Cancer. Antioxidants (Basel) 2025; 14:104. [PMID: 39857438 PMCID: PMC11760893 DOI: 10.3390/antiox14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Breast cancer is one of the most prevalent cancers worldwide. Recent studies have increasingly emphasized the role of oxidative stress in the initiation and progression of breast cancer. This article reviews how oxidative stress imbalance influences the occurrence and advancement of breast cancer, elucidating the intricate mechanisms through which reactive oxygen species (ROS) operate in this context and their potential therapeutic applications. By highlighting these critical insights, this review aims to enhance our understanding of oxidative stress as a potential target for innovative therapeutic strategies in the management of breast cancer.
Collapse
Affiliation(s)
- Rui Dong
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
| | - Jing Wang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
| | - Ruiqi Guan
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
| | - Jianwei Sun
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Ping Jin
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Junling Shen
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| |
Collapse
|
2
|
Bel’skaya LV, Dyachenko EI. Oxidative Stress in Breast Cancer: A Biochemical Map of Reactive Oxygen Species Production. Curr Issues Mol Biol 2024; 46:4646-4687. [PMID: 38785550 PMCID: PMC11120394 DOI: 10.3390/cimb46050282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This review systematizes information about the metabolic features of breast cancer directly related to oxidative stress. It has been shown those redox changes occur at all levels and affect many regulatory systems in the human body. The features of the biochemical processes occurring in breast cancer are described, ranging from nonspecific, at first glance, and strictly biochemical to hormone-induced reactions, genetic and epigenetic regulation, which allows for a broader and deeper understanding of the principles of oncogenesis, as well as maintaining the viability of cancer cells in the mammary gland. Specific pathways of the activation of oxidative stress have been studied as a response to the overproduction of stress hormones and estrogens, and specific ways to reduce its negative impact have been described. The diversity of participants that trigger redox reactions from different sides is considered more fully: glycolytic activity in breast cancer, and the nature of consumption of amino acids and metals. The role of metals in oxidative stress is discussed in detail. They can act as both co-factors and direct participants in oxidative stress, since they are either a trigger mechanism for lipid peroxidation or capable of activating signaling pathways that affect tumorigenesis. Special attention has been paid to the genetic and epigenetic regulation of breast tumors. A complex cascade of mechanisms of epigenetic regulation is explained, which made it possible to reconsider the existing opinion about the triggers and pathways for launching the oncological process, the survival of cancer cells and their ability to localize.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | | |
Collapse
|
3
|
León-Mejía G, Rueda RA, Pérez Pérez J, Miranda-Guevara A, Moreno OF, Quintana-Sosa M, Trindade C, De Moya YS, Ruiz-Benitez M, Lemus YB, Rodríguez IL, Oliveros-Ortiz L, Acosta-Hoyos A, Pacheco-Londoño LC, Muñoz A, Hernández-Rivera SP, Olívero-Verbel J, da Silva J, Henriques JAP. Analysis of the cytotoxic and genotoxic effects in a population chronically exposed to coal mining residues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54095-54105. [PMID: 36869947 PMCID: PMC10119205 DOI: 10.1007/s11356-023-26136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
During coal mining activities, many compounds are released into the environment that can negatively impact human health. Particulate matter, polycyclic aromatic hydrocarbons (PAHs), metals, and oxides are part of the complex mixture that can affect nearby populations. Therefore, we designed this study to evaluate the potential cytotoxic and genotoxic effects in individuals chronically exposed to coal residues from peripheral blood lymphocytes and buccal cells. We recruited 150 individuals who lived more than 20 years in La Loma-Colombia and 120 control individuals from the city of Barranquilla without a history of exposure to coal mining. In the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, significant differences in the frequency of micronucleus (MN), nucleoplasmic bridge (NPB), nuclear bud (NBUD), and apoptotic cells (APOP) were observed between the two groups. In the buccal micronucleus cytome (BM-Cyt) assay, a significant formation of NBUD, karyorrhexis (KRX), karyolysis (KRL), condensed chromatin (CC), and binucleated (BN) cells was observed in the exposed group. Considering the characteristics of the study group, a significant correlation for CBMN-Cyt was found between NBUD and vitamin consumption, between MN or APOP and meat consumption, and between MN and age. Moreover, a significant correlation for BM-Cyt was found between KRL and vitamin consumption or age, and BN versus alcohol consumption. Using Raman spectroscopy, a significant increase in the concentration of DNA/RNA bases, creatinine, polysaccharides, and fatty acids was detected in the urine of individuals exposed to coal mining compared to the control group. These results contribute to the discussion on the effects of coal mining on nearby populations and the development of diseases due to chronic exposure to these residues.
Collapse
Affiliation(s)
- Grethel León-Mejía
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia.
| | - Robinson Alvarez Rueda
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Jose Pérez Pérez
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Alvaro Miranda-Guevara
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Ornella Fiorillo Moreno
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Milton Quintana-Sosa
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Cristiano Trindade
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Yurina Sh De Moya
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Martha Ruiz-Benitez
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Yesit Bello Lemus
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Ibeth Luna Rodríguez
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Ludis Oliveros-Ortiz
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Antonio Acosta-Hoyos
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Leonardo C Pacheco-Londoño
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Amner Muñoz
- Grupo de Investigación en Química Y Biología, Universidad del Norte, Barranquilla, Colombia
| | - Samuel P Hernández-Rivera
- ALERT DHS Center of Excellence for Explosives Research, Department of Chemistry, University of Puerto Rico, Mayagüez, PR, 00681, USA
| | - Jesús Olívero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - Juliana da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana Do Brasil (ULBRA), Canoas-RS, Brazil
| | - João Antonio Pêgas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação Em Biotecnologia E Em Ciências Médicas, Universidade Do Vale Do Taquari - UNIVATES, Lajeado, RS, Brazil
| |
Collapse
|
4
|
Zhong W, Wang X, Wang Y, Sun G, Zhang J, Li Z. Obesity and endocrine-related cancer: The important role of IGF-1. Front Endocrinol (Lausanne) 2023; 14:1093257. [PMID: 36755926 PMCID: PMC9899991 DOI: 10.3389/fendo.2023.1093257] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Obesity is increasingly becoming a global epidemic of concern and is considered a risk factor for several endocrine-related cancers. Moreover, obesity is associated with cancer development and poor prognosis. As a metabolic abnormality, obesity leads to a series of changes in insulin, IGF-1, sex hormones, IGFBPs, and adipokines. Among these factors, IGF-1 plays an important role in obesity-related endocrine cancers. This review describes the role of obesity in endocrine-related cancers, such as prostate cancer, breast cancer and pancreatic cancer, focusing on the mechanism of IGF-1 and the crosstalk with estrogen and adipokines. In addition, this review briefly introduces the current status of IGF-1R inhibitors in clinical practice and shows the prospect of IGF-1R inhibitors in combination with other anticancer drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhuo Li
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Gaymon DO, Barndt R, Stires H, Riggins RB, Johnson MD. ROS is a master regulator of in vitro matriptase activation. PLoS One 2023; 18:e0267492. [PMID: 36716335 PMCID: PMC9886240 DOI: 10.1371/journal.pone.0267492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Matriptase is a type II transmembrane serine protease that is widely expressed in normal epithelial cells and epithelial cancers. Studies have shown that regulation of matriptase expression and activation becomes deranged in several cancers and is associated with poor disease-free survival. Although the central mechanism of its activation has remained unknown, our lab has previously demonstrated that inflammatory conditions such as intracellular pH decrease strongly induces matriptase activation. In this investigation, we first demonstrate clear matriptase activation following Fulvestrant (ICI) and Tykerb (Lapatinib) treatment in HER2-amplified, estrogen receptor (ER)-positive BT474, MDA-MB-361 and ZR-75-30 or single ER-positive MCF7 cells, respectively. This activation modestly involved Phosphoinositide 3-kinase (PI3K) activation and occurred as quickly as six hours post treatment. We also demonstrate that matriptase activation is not a universal hallmark of stress, with Etoposide treated cells showing a larger degree of matriptase activation than Lapatinib and ICI-treated cells. While etoposide toxicity has been shown to be mediated through reactive oxygen species (ROS) and MAPK/ERK kinase (MEK) activity, MEK activity showed no correlation with matriptase activation. Novelly, we demonstrate that endogenous and exogenous matriptase activation are ROS-mediated in vitro and inhibited by N-acetylcysteine (NAC). Lastly, we demonstrate matriptase-directed NAC treatment results in apoptosis of several breast cancer cell lines either alone or in combination with clinically used therapeutics. These data demonstrate the contribution of ROS-mediated survival, its independence of kinase-mediated survival, and the plausibility of using matriptase activation to indicate the potential success of antioxidant therapy.
Collapse
Affiliation(s)
- Darius O. Gaymon
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
- * E-mail:
| | - Robert Barndt
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
| | - Hillary Stires
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
| | - Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
| | - Michael. D. Johnson
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
| |
Collapse
|