1
|
Zhang S, Liu H, Ouyang Z, Xu T, Yang Q, Zhu Y, Wan M, Xiao X, Yang X, Chen S, Yuan L, Bei Y, Wang J, Guo J, Chen H, Tang B, Luo S, Jiao B, Shen L. Accurate Diagnosis of Alzheimer's Disease Using Specific Breath Volatile Organic Compounds. ACS Sens 2025; 10:2699-2711. [PMID: 40107845 DOI: 10.1021/acssensors.4c03329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Whether volatile organic compounds (VOCs) from exhaled breath can be used as a novel biomarker for Alzheimer's disease (AD) diagnosis is unclear. To determine the significantly distinctive VOCs for AD, a total of 970 participants were enrolled, including 60 individuals in data set 1 (AD, 30; controls, 30), 164 individuals in data set 2 (AD, 82; controls, 82), 637 individuals in data set 3 (AD, 31; controls, 606), and 109 individuals in data set 4 (frontotemporal dementia, 19; vascular dementia, 21; Parkinson's disease, 69). The participants in data sets 1, 2, and 4 were from Xiangya Hospital, Central South University. Participants in data set 3 were from a two-year follow-up cohort. VOCs in breath and plasma, neuropsychological scores, plasma p-tau181 levels, metabolites in plasma, and brain functional connectivity were detected. We found that six VOCs were significantly different between the two groups in data set 1 and were verified in data set 2 and data set 3. Ethanol (m/z = 46) and pyrrole (m/z = 67) presented AUC values of 0.907 and 0.895 in data sets 1 and 2 (clinical data sets) and 0.849 and 0.974 in data set 3 (community data set), respectively. The six VOCs were associated with cognitive decline as reflected by neuropsychological tests; five of them were correlated with plasma p-tau181, and these five plasma VOCs were consistently altered as breath VOCs. Correlation between metabolites and five VOCs in plasma was noted, and the five VOCs may originate from blood metabolites. Moreover, four breath VOCs were associated with altered brain connectivity. In conclusion, specific breath VOCs may be used as biomarkers for AD detection.
Collapse
Affiliation(s)
- Sizhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Haokun Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ziyu Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tianyan Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Meidan Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xuan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuliang Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Li Yuan
- Department of Neurology, Liuyang Jili Hospital, Changsha 410399, China
| | - Yuzhang Bei
- Department of Neurology, Liuyang Jili Hospital, Changsha 410399, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Haibin Chen
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing 100000, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shilin Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
- Brain Research Center, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
2
|
Liu W, Chen X, Zhao J, Yang C, Huang G, Zhang Z, Liu J. Protective signature of xanthohumol on cognitive function of APP/PS1 mice: a urine metabolomics approach by age. Front Pharmacol 2024; 15:1423060. [PMID: 39114364 PMCID: PMC11303171 DOI: 10.3389/fphar.2024.1423060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Alzheimer's disease (AD) has an increasing prevalence, complicated pathogenesis and no effective cure. Emerging evidences show that flavonoid compounds such as xanthohumol (Xn) could play an important role as a dietary supplement or traditional Chinese herbal medicine in the management of diseases such as AD. This study aims to analyze the target molecules of Xn in the prevention and treatment of AD, and its potential mechanism from the perspective of metabolites. APP/PS1 mice 2- and 6-months old were treated with Xn for 3 months, respectively, the younger animals to test for AD-like brain disease prevention and the older animals to address therapeutic effects on the disease. Memantine (Mem) was selected as positive control. Behavioral tests were performed to assess the course of cognitive function. Urine samples were collected and analyzed by high-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) coupled with online Compound Discoverer software. Morris Water Maze (MWM) tests showed that Xn, like Mem, had a therapeutic but not a preventive effect on cognitive impairment. The expression levels of urinary metabolites appeared to show an opposite trend at different stages of Xn treatment, downregulated in the prevention phase while upregulated in the therapy phase. In addition, the metabolic mechanisms of Xn during preventive treatment were also different from that during therapeutic treatment. The signaling pathways metabolites nordiazepam and genistein were specifically regulated by Xn but not by Mem in the disease prevention stage. The signaling pathway metabolite ascorbic acid was specifically regulated by Xn in the therapeutic stage. In conclusion, dietary treatment with Xn altered the urinary metabolite profile at different stages of administration in APP/PS1 mice. The identified potential endogenous metabolic biomarkers and signal pathways open new avenues to investigate the pathogenesis and treatment of AD.
Collapse
Affiliation(s)
- Wei Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiao Chen
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jing Zhao
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Chen Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Guanqin Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhen Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
3
|
Chen Y, Al-Nusaif M, Li S, Tan X, Yang H, Cai H, Le W. Progress on early diagnosing Alzheimer's disease. Front Med 2024; 18:446-464. [PMID: 38769282 PMCID: PMC11391414 DOI: 10.1007/s11684-023-1047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/15/2023] [Indexed: 05/22/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects both cognition and non-cognition functions. The disease follows a continuum, starting with preclinical stages, progressing to mild cognitive and behavioral impairment, ultimately leading to dementia. Early detection of AD is crucial for better diagnosis and more effective treatment. However, the current AD diagnostic tests of biomarkers using cerebrospinal fluid and/or brain imaging are invasive or expensive, and mostly are still not able to detect early disease state. Consequently, there is an urgent need to develop new diagnostic techniques with higher sensitivity and specificity during the preclinical stages of AD. Various non-cognitive manifestations, including behavioral abnormalities, sleep disturbances, sensory dysfunctions, and physical changes, have been observed in the preclinical AD stage before occurrence of notable cognitive decline. Recent research advances have identified several biofluid biomarkers as early indicators of AD. This review focuses on these non-cognitive changes and newly discovered biomarkers in AD, specifically addressing the preclinical stages of the disease. Furthermore, it is of importance to explore the potential for developing a predictive system or network to forecast disease onset and progression at the early stage of AD.
Collapse
Affiliation(s)
- Yixin Chen
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Murad Al-Nusaif
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Xiang Tan
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Huijia Yang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China.
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| |
Collapse
|
4
|
Zhang C, Qi H, Jia D, Zhao J, Xu C, Liu J, Cui Y, Zhang J, Wang M, Chen M, Tang B. Cognitive impairment in Alzheimer's disease FAD 4T mouse model: Synaptic loss facilitated by activated microglia via C1qA. Life Sci 2024; 340:122457. [PMID: 38266812 DOI: 10.1016/j.lfs.2024.122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/09/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disorder characterized by cognitive dysfunction. The connection between neuroinflammation and abnormal synaptic function in AD is recognized, but the underlying mechanisms remain unclear. In this study, we utilized a mouse model of AD, FAD4T mice aged 6-7 months, to investigate the molecular changes affecting cognitive impairment. Behavior tests showed that FAD4T mice exhibited impaired spatial memory compared with their wild-type littermates. Immunofluorescence staining revealed the presence of Aβ plaques and abnormal glial cell activation as well as changes in microglial morphology in the cortex and hippocampus of FAD4T mice. Synaptic function was impaired in FAD4T mice. Patch clamp recordings of hippocampal neurons revealed reduced amplitude of miniature excitatory postsynaptic currents. Additionally, Golgi staining showed decreased dendritic spine density in the cortex and hippocampus of FAD4T mice, indicating aberrant synapse morphology. Moreover, hippocampal PSD-95 and NMDAR1 protein levels decreased in FAD4T mice. RNA-seq analysis revealed elevated expression of immune system and proinflammatory genes, including increased C1qA protein and mRNA levels, as well as higher expression of TNF-α and IL-18. Taken together, our findings suggest that excessive microglia activation mediated by complement factor C1qA may contribute to aberrant synaptic pruning, resulting in synapse loss and disrupted synaptic transmission, ultimately leading to AD pathogenesis and behavioral impairments in the FAD4T mouse model. Our study provides valuable insights into the underlying mechanisms of cognitive impairments and preliminarily explores a potentially effective treatment approach targeting on C1qA for AD.
Collapse
Affiliation(s)
- Cui Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Hao Qi
- GemPharmatech Inc., 12 Xuefu Road, Jiangbei New Area, Nanjing 210061, China
| | - Dongjing Jia
- GemPharmatech Inc., 12 Xuefu Road, Jiangbei New Area, Nanjing 210061, China
| | - Jingting Zhao
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chengyuan Xu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yangfeng Cui
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jiajian Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Minzhe Wang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Binliang Tang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China.
| |
Collapse
|
5
|
Armenta-Castro A, Núñez-Soto MT, Rodriguez-Aguillón KO, Aguayo-Acosta A, Oyervides-Muñoz MA, Snyder SA, Barceló D, Saththasivam J, Lawler J, Sosa-Hernández JE, Parra-Saldívar R. Urine biomarkers for Alzheimer's disease: A new opportunity for wastewater-based epidemiology? ENVIRONMENT INTERNATIONAL 2024; 184:108462. [PMID: 38335627 DOI: 10.1016/j.envint.2024.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
While Alzheimer's disease (AD) diagnosis, management, and care have become priorities for healthcare providers and researcher's worldwide due to rapid population aging, epidemiologic surveillance efforts are currently limited by costly, invasive diagnostic procedures, particularly in low to middle income countries (LMIC). In recent years, wastewater-based epidemiology (WBE) has emerged as a promising tool for public health assessment through detection and quantification of specific biomarkers in wastewater, but applications for non-infectious diseases such as AD remain limited. This early review seeks to summarize AD-related biomarkers and urine and other peripheral biofluids and discuss their potential integration to WBE platforms to guide the first prospective efforts in the field. Promising results have been reported in clinical settings, indicating the potential of amyloid β, tau, neural thread protein, long non-coding RNAs, oxidative stress markers and other dysregulated metabolites for AD diagnosis, but questions regarding their concentration and stability in wastewater and the correlation between clinical levels and sewage circulation must be addressed in future studies before comprehensive WBE systems can be developed.
Collapse
Affiliation(s)
| | - Mónica T Núñez-Soto
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Kassandra O Rodriguez-Aguillón
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Shane A Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain; Sustainability Cluster, School of Engineering at the UPES, Dehradun, Uttarakhand, India
| | - Jayaprakash Saththasivam
- Water Center, Qatar Environment & Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Qatar
| | - Jenny Lawler
- Water Center, Qatar Environment & Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Qatar
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
6
|
Ying N, Luo H, Li B, Gong K, Shu Q, Liang F, Gao H, Huang T, Zheng H. Exercise Alleviates Behavioral Disorders but Shapes Brain Metabolism of APP/PS1 Mice in a Region- and Exercise-Specific Manner. J Proteome Res 2023. [PMID: 37126732 DOI: 10.1021/acs.jproteome.2c00691] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Exercise plays a beneficial role in the management of Alzheimer's disease (AD), but its effects on brain metabolism are still far from being understood. Here, we examined behavioral changes of APP/PS1 mice after high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) and analyzed metabolomics profiles in the hippocampus, cortex, and hypothalamus by using nuclear magnetic resonance spectroscopy to explore potential metabolic mechanisms. The results demonstrate that both HIIT and MICT alleviated anxiety/depressive-like behaviors as well as learning and memory impairments of AD mice. Metabolomics analysis reveals that energy metabolism, neurotransmitter metabolism, and membrane metabolism were significantly altered in all three brain regions after both types of exercises. Amino acid metabolism was detected to be affected in the cortex and hypothalamus after HIIT and in the hippocampus and hypothalamus after MICT. However, only HIIT significantly altered astrocyte-neuron metabolism in the hippocampus and hypothalamus of AD mice. Therefore, our study suggests that exercise can shape brain metabolism of AD mice in a region- and exercise-specific manner, indicating that the precise modification of brain metabolism by a specific type of exercise might be a novel perspective for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Na Ying
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hanqi Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Baixia Li
- School of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Kaiyan Gong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qi Shu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Fei Liang
- College of Physical Education, Gannan Normal University, Ganzhou 341000, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tao Huang
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|