1
|
Kobayashi Y, Hamamoto A, Saito Y. Ciliary length variations impact cilia-mediated signaling and biological responses. J Biochem 2024; 176:369-383. [PMID: 39115281 DOI: 10.1093/jb/mvae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/24/2024] [Indexed: 11/05/2024] Open
Abstract
Primary cilia are thin hair-like organelles that protrude from the surface of most mammalian cells. They act as specialized cell antennas that can vary widely in response to specific stimuli. However, the effect of changes in cilia length on cellular signaling and behavior remains unclear. Therefore, we aimed to characterize the elongated primary cilia induced by different chemical agents, lithium chloride (LiCl), cobalt chloride (CoCl2) and rotenone, using human retinal pigmented epithelial 1 (hRPE1) cells expressing ciliary G protein-coupled receptor (GPCR), melanin-concentrating hormone (MCH) receptor 1 (MCHR1). MCH induces cilia shortening mainly via MCHR1-mediated Akt phosphorylation. Therefore, we verified the proper functioning of the MCH-MCHR1 axis in elongated cilia. Although MCH shortened cilia that were elongated by LiCl and rotenone, it did not shorten CoCl2-induced elongated cilia, which exhibited lesser Akt phosphorylation. Furthermore, serum readdition was found to delay cilia shortening in CoCl2-induced elongated cilia. In contrast, rotenone-induced elongated cilia rapidly shortened via a chopping mechanism at the tip of the cilia. Conclusively, we found that each chemical exerted different effects on ciliary GPCR signaling and serum-mediated ciliary structure dynamics in cells with elongated cilia. These results provide a basis for understanding the functional consequences of changes in ciliary length.
Collapse
|
2
|
Hernández-Cáceres MP, Pinto-Nuñez D, Rivera P, Burgos P, Díaz-Castro F, Criollo A, Yañez MJ, Morselli E. Role of lipids in the control of autophagy and primary cilium signaling in neurons. Neural Regen Res 2024; 19:264-271. [PMID: 37488876 PMCID: PMC10503597 DOI: 10.4103/1673-5374.377414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/09/2023] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Abstract
The brain is, after the adipose tissue, the organ with the greatest amount of lipids and diversity in their composition in the human body. In neurons, lipids are involved in signaling pathways controlling autophagy, a lysosome-dependent catabolic process essential for the maintenance of neuronal homeostasis and the function of the primary cilium, a cellular antenna that acts as a communication hub that transfers extracellular signals into intracellular responses required for neurogenesis and brain development. A crosstalk between primary cilia and autophagy has been established; however, its role in the control of neuronal activity and homeostasis is barely known. In this review, we briefly discuss the current knowledge regarding the role of autophagy and the primary cilium in neurons. Then we review the recent literature about specific lipid subclasses in the regulation of autophagy, in the control of primary cilium structure and its dependent cellular signaling in physiological and pathological conditions, specifically focusing on neurons, an area of research that could have major implications in neurodevelopment, energy homeostasis, and neurodegeneration.
Collapse
Affiliation(s)
- María Paz Hernández-Cáceres
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Daniela Pinto-Nuñez
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Patricia Rivera
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Burgos
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Francisco Díaz-Castro
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfredo Criollo
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Maria Jose Yañez
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| |
Collapse
|
3
|
Santillán-Morales V, Rodriguez-Espinosa N, Muñoz-Estrada J, Alarcón-Elizalde S, Acebes Á, Benítez-King G. Biomarkers in Alzheimer's Disease: Are Olfactory Neuronal Precursors Useful for Antemortem Biomarker Research? Brain Sci 2024; 14:46. [PMID: 38248261 PMCID: PMC10813897 DOI: 10.3390/brainsci14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD), as the main cause of dementia, affects millions of people around the world, whose diagnosis is based mainly on clinical criteria. Unfortunately, the diagnosis is obtained very late, when the neurodegenerative damage is significant for most patients. Therefore, the exhaustive study of biomarkers is indispensable for diagnostic, prognostic, and even follow-up support. AD is a multifactorial disease, and knowing its underlying pathological mechanisms is crucial to propose new and valuable biomarkers. In this review, we summarize some of the main biomarkers described in AD, which have been evaluated mainly by imaging studies in cerebrospinal fluid and blood samples. Furthermore, we describe and propose neuronal precursors derived from the olfactory neuroepithelium as a potential resource to evaluate some of the widely known biomarkers of AD and to gear toward searching for new biomarkers. These neuronal lineage cells, which can be obtained directly from patients through a non-invasive and outpatient procedure, display several characteristics that validate them as a surrogate model to study the central nervous system, allowing the analysis of AD pathophysiological processes. Moreover, the ease of obtaining and harvesting endows them as an accessible and powerful resource to evaluate biomarkers in clinical practice.
Collapse
Affiliation(s)
- Valeria Santillán-Morales
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| | - Norberto Rodriguez-Espinosa
- Department of Neurology, University Hospital Nuestra Señora de Candelaria, 38010 Tenerife, Spain;
- Department of Internal Medicine, Dermatology and Psychiatry, Faculty of Health Sciences, University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Jesús Muñoz-Estrada
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA 90069, USA;
| | - Salvador Alarcón-Elizalde
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| | - Ángel Acebes
- Department of Basic Medical Sciences, Institute of Biomedical Technologies (ITB), University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Gloria Benítez-King
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| |
Collapse
|
4
|
Jang J, Yeo S, Baek S, Jung HJ, Lee MS, Choi SH, Choe Y. Abnormal accumulation of extracellular vesicles in hippocampal dystrophic axons and regulation by the primary cilia in Alzheimer's disease. Acta Neuropathol Commun 2023; 11:142. [PMID: 37667395 PMCID: PMC10478284 DOI: 10.1186/s40478-023-01637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
Dystrophic neurites (DNs) are abnormal axons and dendrites that are swollen or deformed in various neuropathological conditions. In Alzheimer's disease (AD), DNs play a crucial role in impairing neuronal communication and function, and they may also contribute to the accumulation and spread of amyloid beta (Aβ) in the brain of AD patients. However, it is still a challenge to understand the DNs of specific neurons that are vulnerable to Aβ in the pathogenesis of AD. To shed light on the development of radiating DNs, we examined enriched dystrophic hippocampal axons in a mouse model of AD using a three-dimensional rendering of projecting neurons. We employed the anterograde spread of adeno-associated virus (AAV)1 and conducted proteomic analysis of synaptic compartments obtained from hippocampo-septal regions. Our findings revealed that DNs were formed due to synaptic loss at the axon terminals caused by the accumulation of extracellular vesicle (EV). Abnormal EV-mediated transport and exocytosis were identified in association with primary cilia, indicating their involvement in the accumulation of EVs at presynaptic terminals. To further address the regulation of DNs by primary cilia, we conducted knockdown of the Ift88 gene in hippocampal neurons, which impaired EV-mediated secretion of Aβ and promoted accumulation of axonal spheroids. Using single-cell RNA sequencing, we identified the septal projecting hippocampal somatostatin neurons (SOM) as selectively vulnerable to Aβ with primary cilia dysfunction and vesicle accumulation. Our study suggests that DNs in AD are initiated by the ectopic accumulation of EVs at the neuronal axon terminals, which is affected by neuronal primary cilia.
Collapse
Affiliation(s)
| | - Seungeun Yeo
- Korea Brain Research Institute, Daegu, 41068, Korea
| | | | | | - Mi Suk Lee
- Korea Brain Research Institute, Daegu, 41068, Korea
| | | | - Youngshik Choe
- Korea Brain Research Institute, Daegu, 41068, Korea.
- , Daegu, Korea.
| |
Collapse
|
5
|
Kobayashi Y, Saito Y. Evaluation of ciliary-GPCR dynamics using a validated organotypic brain slice culture method. Methods Cell Biol 2023; 175:69-83. [PMID: 36967146 DOI: 10.1016/bs.mcb.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The primary cilium is a structural organelle present in most mammalian cells. Primary cilia are enriched with a unique protein repertoire distinct from that of the cytosol and the plasma membrane. Such a highly organized microenvironment creates effective machinery for translating extracellular cues into intracellular signals. G protein-coupled receptors (GPCRs) are key receptors in sensing environmental stimuli transmitted via a second messenger into a cellular response. Recent data has demonstrated that a limited number of non-olfactory GPCRs, including melanin-concentrating hormone receptor 1 (MCHR1), are preferentially localized to ciliary membranes of several mammalian cell types, including neuronal cells. Evidence was accumulated to support the functional importance of ciliary-GPCR signaling accompanying ciliary structural changes using cilia-specific cell and molecular biology techniques. Thus, cilia are now considered to function as a unique sensory platform for the integration of GPCR signaling and various cytoplasmic domains. Dissociated neurons expressing ciliary-GPCRs can be a useful tool for examining ciliary dynamics. However, losing preexisting neuronal connectivity may alter neuronal ciliary morphology, such as abnormal elongation. Brain slices prepared under ex vitro conditions are a powerful approach that maintains the cytoarchitecture, enabling researchers to have accurate control over experimental conditions and to study individual cells from subregions of the brain. Here, we present a detailed description of our novel modified method for organotypic culture of rat brain slice and a validated immunostaining protocol to characterize ciliary-GPCR dynamics in coupling with neuropeptides or aminergic activation.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yumiko Saito
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|