1
|
Menozzi L, Vu T, Canning AJ, Rawtani H, Taboada C, Abi Antoun ME, Ma C, Delia J, Nguyen VT, Cho SW, Chen J, Charity T, Xu Y, Tran P, Xia J, Palmer GM, Vo-Dinh T, Feng L, Yao J. Three-dimensional diffractive acoustic tomography. Nat Commun 2025; 16:1149. [PMID: 39880853 PMCID: PMC11779832 DOI: 10.1038/s41467-025-56435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Acoustically probing biological tissues with light or sound, photoacoustic and ultrasound imaging can provide anatomical, functional, and/or molecular information at depths far beyond the optical diffusion limit. However, most photoacoustic and ultrasound imaging systems rely on linear-array transducers with elevational focusing and are limited to two-dimensional imaging with anisotropic resolutions. Here, we present three-dimensional diffractive acoustic tomography (3D-DAT), which uses an off-the-shelf linear-array transducer with single-slit acoustic diffraction. Without jeopardizing its accessibility by general users, 3D-DAT has achieved simultaneous 3D photoacoustic and ultrasound imaging with optimal imaging performance in deep tissues, providing near-isotropic resolutions, high imaging speed, and a large field-of-view, as well as enhanced quantitative accuracy and detection sensitivity. Moreover, powered by the fast focal line volumetric reconstruction, 3D-DAT has achieved 50-fold faster reconstruction times than traditional photoacoustic imaging reconstruction. Using 3D-DAT on small animal models, we mapped the distribution of the biliverdin-binding serpin complex in glassfrogs, tracked gold nanoparticle accumulation in a mouse tumor model, imaged genetically-encoded photoswitchable tumors, and investigated polyfluoroalkyl substances exposure on developing embryos. With its enhanced imaging performance and high accessibility, 3D-DAT may find broad applications in fundamental life sciences and biomedical research.
Collapse
Affiliation(s)
- Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aidan J Canning
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Carlos Taboada
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jesse Delia
- American Museum of Natural History, New York City, New York, USA
| | - Van Tu Nguyen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Soon-Woo Cho
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jianing Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Theresa Charity
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yirui Xu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Phuong Tran
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, USA
| | - Gregory M Palmer
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Tuan Vo-Dinh
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.
| | - Liping Feng
- Duke University School of Medicine, Durham, NC, USA.
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Neurology, Duke University of School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Liu Y, Li J, Guo H, Fang C, Yang Q, Qin W, Wang H, Xian Y, Yan X, Yin B, Zhang K. Nanomaterials for stroke diagnosis and treatment. iScience 2024; 27:111112. [PMID: 39502285 PMCID: PMC11536039 DOI: 10.1016/j.isci.2024.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Nanomaterials and nanotechnology innovations possess unique physicochemical properties that present new opportunities in the realm of stroke detection, diagnosis, and treatment. This comprehensive review explores the utilization of nanomaterials in the diagnosis and treatment of strokes, encompassing recent advancements in computed tomography (CT), magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), as well as groundbreaking applications of nanomaterials and bionanomaterials in drug delivery systems and brain tissue repair. Additionally, this review meticulously examines significant challenges such as biocompatibility toxicity and long-term safety, proposing potential strategies to surmount these obstacles. Moreover, this review delves into the application of nanomaterials to improve the clinical diagnosis of stroke patients, elucidates the potential of nanotechnology in post-stroke therapy, and identifies future research directions and potential clinical applications.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Junying Li
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, No. 18 Jinfeng Road, Zhuhai 519087, Guangdong Province, China
| | - Huaijuan Guo
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Chao Fang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Qiaoling Yang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Wen Qin
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Hai Wang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Yong Xian
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Xuebing Yan
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People’s Hospital, Affiliated Hospital of Xuzhou Medical University, Suining 221200, China
| | - Binxu Yin
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Kun Zhang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| |
Collapse
|
3
|
Akhmadeev B, Retyunskaya O, Islamova L, Fazleeva G, Kalinin A, Katsyuba S, Elistratova J, Sinyashin O, Mustafina A. Biomimetic nanoplatforms constructed from dialkylaminostyryl hetarene dyes and phospholipids exhibiting selective fluorescent response to specific proteins. Colloids Surf B Biointerfaces 2024; 241:114046. [PMID: 38908044 DOI: 10.1016/j.colsurfb.2024.114046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
The present work explores the specificity of supramolecular assemblies comprising dialkylaminostyrylhetarene dye molecules incorporated into phosphatidylcholine (PC) or phosphatidylserine (PS) aggregates. In PS-based assemblies, the dyes demonstrate a concentration-dependent fluorescent response, distinguishing anionic proteins such as bovine serum albumin (BSA) and pepsin from lysozyme (LYZ) in aqueous solutions. Conversely, no significant response is observed when the dyes are incorporated into the well-organized bilayers of neutral PC. The fluorescent response arises from the binding of dyes to proteins, leading to the detachment of dye molecules from the assemblies, rather than from the binding of proteins to the assemblies, although the latter process is facilitated by electrostatic attraction. Thus, both the poor ordering of PS molecules and the interfacial arrangement of the dyes are prerequisites for the fluorescent response of dye-PS aggregates. The structure of the dyes significantly impacts the spectral features of dye-PS and dye-protein assemblies. An optimal dye structure has been identified for the recognition of BSA, with a limit of detection (LOD) of 10.8 nM.
Collapse
Affiliation(s)
- Bulat Akhmadeev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St. Kazan 420088, Russia; Kazan (Volga region) Federal University, Kremlyovskaya Str., 18, Kazan 420008, Russia.
| | - Olga Retyunskaya
- Kazan (Volga region) Federal University, Kremlyovskaya Str., 18, Kazan 420008, Russia
| | - Liliya Islamova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St. Kazan 420088, Russia
| | - Guzyal Fazleeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St. Kazan 420088, Russia
| | - Alexey Kalinin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St. Kazan 420088, Russia
| | - Sergey Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St. Kazan 420088, Russia
| | - Julia Elistratova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St. Kazan 420088, Russia
| | - Oleg Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St. Kazan 420088, Russia
| | - Asiya Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St. Kazan 420088, Russia
| |
Collapse
|
4
|
Zairov RR, Kornev TA, Akhmadeev BS, Dovzhenko AP, Vasilyev VA, Kholin KV, Nizameeva GR, Ismaev IE, Mukhametzyanov TA, Liubina АP, Voloshina AD, Mustafina AR. Expanding Mn 2+ loading capacity of BSA via mild non-thermal denaturing and cross-linking as a tool to maximize the relaxivity of water protons. Int J Biol Macromol 2024; 266:131338. [PMID: 38569987 DOI: 10.1016/j.ijbiomac.2024.131338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Development of nanoparticles (NPs) serving as contrast enhancing agents in MRI requires a combination of high contrasting effect with the biosafety and hemocompatibility. This work demonstrates that bovine serum albumin (BSA) molecules bound to paramagnetic Mn2+ ions are promising building blocks of such NPs. The desolvation-induced denaturation of BSA bound with Mn2+ ions followed by the glutaraldehyde-facilitated cross-linking provides the uniform in size 102.0 ± 0.7 nm BSA-based nanoparticles (BSA-NPs) loaded with Mn2+ ions, which are manifested in aqueous solutions as negatively charged spheres with high colloid stability. The optimal loading of Mn2+ ions into BSA-NPs provides maximum values of longitudinal and transverse relaxivity at 98.9 and 133.6 mM-1 s-1, respectively, which are among the best known from the literature. The spin trap EPR method indicates that Mn2+ ions bound to BSA-NPs exhibit poor catalytic activity in the Fenton-like reaction. On the contrary, the presence of BSA-NPs has an antioxidant effect by preventing the accumulation of hydroxyl radicals produced by H2O2. The NPs exhibit remarkably low hemolytic activity and hemagglutination can be avoided at concentrations lower than 110 μM. Thus, BSA-NPs bound with Mn2+ ions are promising candidates for combining high contrast effect with biosafety and hemocompatibility.
Collapse
Affiliation(s)
- Rustem R Zairov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation.
| | - Timur A Kornev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Bulat S Akhmadeev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Alexey P Dovzhenko
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Vadim A Vasilyev
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Kirill V Kholin
- Kazan National Research Technological University, 68, K. Marx str., 420015 Kazan, Russian Federation
| | - Guliya R Nizameeva
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Kazan National Research Technological University, 68, K. Marx str., 420015 Kazan, Russian Federation
| | - Ildus E Ismaev
- A.N. Tupolev Kazan Research Technological University, Kazan 420015, Russia
| | - Timur A Mukhametzyanov
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Аnna P Liubina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Alexandra D Voloshina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Asiya R Mustafina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| |
Collapse
|
5
|
Toljan K, Ashok A, Labhasetwar V, Hussain MS. Nanotechnology in Stroke: New Trails with Smaller Scales. Biomedicines 2023; 11:biomedicines11030780. [PMID: 36979759 PMCID: PMC10045028 DOI: 10.3390/biomedicines11030780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Stroke is a leading cause of death, long-term disability, and socioeconomic costs, highlighting the urgent need for effective treatment. During acute phase, intravenous administration of recombinant tissue plasminogen activator (tPA), a thrombolytic agent, and endovascular thrombectomy (EVT), a mechanical intervention to retrieve clots, are the only FDA-approved treatments to re-establish cerebral blood flow. Due to a short therapeutic time window and high potential risk of cerebral hemorrhage, a limited number of acute stroke patients benefit from tPA treatment. EVT can be performed within an extended time window, but such intervention is performed only in patients with occlusion in a larger, anatomically more proximal vasculature and is carried out at specialty centers. Regardless of the method, in case of successful recanalization, ischemia-reperfusion injury represents an additional challenge. Further, tPA disrupts the blood-brain barrier integrity and is neurotoxic, aggravating reperfusion injury. Nanoparticle-based approaches have the potential to circumvent some of the above issues and develop a thrombolytic agent that can be administered safely beyond the time window for tPA treatment. Different attributes of nanoparticles are also being explored to develop a multifunctional thrombolytic agent that, in addition to a thrombolytic agent, can contain therapeutics such as an anti-inflammatory, antioxidant, neuro/vasoprotective, or imaging agent, i.e., a theragnostic agent. The focus of this review is to highlight these advances as they relate to cerebrovascular conditions to improve clinical outcomes in stroke patients.
Collapse
Affiliation(s)
- Karlo Toljan
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anushruti Ashok
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vinod Labhasetwar
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence: (V.L.); (M.S.H.)
| | - M. Shazam Hussain
- Cerebrovascular Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence: (V.L.); (M.S.H.)
| |
Collapse
|
6
|
Menozzi L, Yang W, Feng W, Yao J. Sound out the impaired perfusion: Photoacoustic imaging in preclinical ischemic stroke. Front Neurosci 2022; 16:1055552. [PMID: 36532279 PMCID: PMC9751426 DOI: 10.3389/fnins.2022.1055552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Acoustically detecting the optical absorption contrast, photoacoustic imaging (PAI) is a highly versatile imaging modality that can provide anatomical, functional, molecular, and metabolic information of biological tissues. PAI is highly scalable and can probe the same biological process at various length scales ranging from single cells (microscopic) to the whole organ (macroscopic). Using hemoglobin as the endogenous contrast, PAI is capable of label-free imaging of blood vessels in the brain and mapping hemodynamic functions such as blood oxygenation and blood flow. These imaging merits make PAI a great tool for studying ischemic stroke, particularly for probing into hemodynamic changes and impaired cerebral blood perfusion as a consequence of stroke. In this narrative review, we aim to summarize the scientific progresses in the past decade by using PAI to monitor cerebral blood vessel impairment and restoration after ischemic stroke, mostly in the preclinical setting. We also outline and discuss the major technological barriers and challenges that need to be overcome so that PAI can play a more significant role in preclinical stroke research, and more importantly, accelerate its translation to be a useful clinical diagnosis and management tool for human strokes.
Collapse
Affiliation(s)
- Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|