1
|
Goldstein B. Animal physiology: How do tardigrades survive intense radiation? Curr Biol 2025; 35:R216-R218. [PMID: 40132552 DOI: 10.1016/j.cub.2025.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Tardigrades survive levels of radiation that would kill most animal life. A new paper unveils more of their tricks, including a pigment that can protect cells from radiation damage and a protein that can concentrate DNA repair machinery at sites of DNA damage.
Collapse
Affiliation(s)
- Bob Goldstein
- Biology Department and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Saigo T, Satoh K, Kunieda T. Comparative Study of Gamma Radiation Tolerance between Desiccation-Sensitive and Desiccation-Tolerant Tardigrades. Zoolog Sci 2025; 42. [PMID: 39932749 DOI: 10.2108/zs240056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/08/2024] [Indexed: 05/08/2025]
Abstract
Tardigrades are small metazoans renowned for their exceptional tolerance against various harsh environments in a dehydrated state. Some species exhibited an extraordinary tolerance against high-dose irradiation even in a hydrated state. Given that natural sources of high radiation are rare, the selective pressure to obtain such a high radiotolerance during evolution remains elusive. It has been postulated that high radiation tolerances could be derived from adaptation to dehydration, because both dehydration and radiation cause similar damage on biomolecules at least partly, e.g., DNA cleavage and oxidation of various biomolecules, and dehydration is a common environmental stress that terrestrial organisms should adapt to. Although tardigrades are known for high radiotolerance, the radiotolerance records have been reported only for desiccation-tolerant tardigrade species and nothing was known about the radiotolerance in desiccation-sensitive tardigrade species. Hence, the relationship between desiccation-tolerance and radiotolerance remained unexplored. To this end, we examined the radiotolerance of the desiccation-sensitive tardigrade Grevenius myrops (formerly known as Isohypsibius myrops) in comparison to the well-characterized desiccation-tolerant tardigrade, Ramazzottius varieornatus. The median lethal dose (LD50) of G. myrops was approximately 2240 Gy. This was much lower than those reported for desiccation tolerant eutardigrades. The effects of irradiation on the lifespan and the ovipositions were more severe in G. myrops compared to those in R. varieornatus. The present study provides precise records on the radiotolerance of a desiccation-sensitive tardigrade and the current data supported the correlation between desiccation tolerance and radiotolerance at least in eutardigrades.
Collapse
Affiliation(s)
- Tokiko Saigo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bukyo-ku, Tokyo 113-0033, Japan
| | - Katsuya Satoh
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bukyo-ku, Tokyo 113-0033, Japan,
| |
Collapse
|
3
|
Anoud M, Delagoutte E, Helleu Q, Brion A, Duvernois-Berthet E, As M, Marques X, Lamribet K, Senamaud-Beaufort C, Jourdren L, Adrait A, Heinrich S, Toutirais G, Hamlaoui S, Gropplero G, Giovannini I, Ponger L, Geze M, Blugeon C, Couté Y, Guidetti R, Rebecchi L, Giovannangeli C, De Cian A, Concordet JP. Comparative transcriptomics reveal a novel tardigrade-specific DNA-binding protein induced in response to ionizing radiation. eLife 2024; 13:RP92621. [PMID: 38980300 PMCID: PMC11233135 DOI: 10.7554/elife.92621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades' radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.
Collapse
Affiliation(s)
- Marwan Anoud
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
- Université Paris-SaclayOrsayFrance
| | | | - Quentin Helleu
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | - Alice Brion
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | | | - Marie As
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | - Xavier Marques
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
- CeMIM, MNHN, CNRS UMR7245ParisFrance
| | | | - Catherine Senamaud-Beaufort
- Génomique ENS, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Laurent Jourdren
- Génomique ENS, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Annie Adrait
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEAGrenobleFrance
| | - Sophie Heinrich
- Institut Curie, Inserm U1021-CNRS UMR 3347, Université Paris-Saclay, Université PSLOrsay CedexFrance
- Plateforme RADEXP, Institut CurieOrsayFrance
| | | | | | | | - Ilaria Giovannini
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Loic Ponger
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | - Marc Geze
- CeMIM, MNHN, CNRS UMR7245ParisFrance
| | - Corinne Blugeon
- Génomique ENS, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEAGrenobleFrance
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | | | - Anne De Cian
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | | |
Collapse
|
4
|
Smith FW, Game M, Mapalo MA, Chavarria RA, Harrison TR, Janssen R. Developmental and genomic insight into the origin of the tardigrade body plan. Evol Dev 2024; 26:e12457. [PMID: 37721221 DOI: 10.1111/ede.12457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Tardigrada is an ancient lineage of miniaturized animals. As an outgroup of the well-studied Arthropoda and Onychophora, studies of tardigrades hold the potential to reveal important insights into body plan evolution in Panarthropoda. Previous studies have revealed interesting facets of tardigrade development and genomics that suggest that a highly compact body plan is a derived condition of this lineage, rather than it representing an ancestral state of Panarthropoda. This conclusion was based on studies of several species from Eutardigrada. We review these studies and expand on them by analyzing the publicly available genome and transcriptome assemblies of Echiniscus testudo, a representative of Heterotardigrada. These new analyses allow us to phylogenetically reconstruct important features of genome evolution in Tardigrada. We use available data from tardigrades to interrogate several recent models of body plan evolution in Panarthropoda. Although anterior segments of panarthropods are highly diverse in terms of anatomy and development, both within individuals and between species, we conclude that a simple one-to-one alignment of anterior segments across Panarthropoda is the best available model of segmental homology. In addition to providing important insight into body plan diversification within Panarthropoda, we speculate that studies of tardigrades may reveal generalizable pathways to miniaturization.
Collapse
Affiliation(s)
- Frank W Smith
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Marc A Mapalo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Raul A Chavarria
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Taylor R Harrison
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Sugiura K, Yoshida Y, Hayashi K, Arakawa K, Kunieda T, Matsumoto M. Sexual dimorphism in the tardigrade Paramacrobiotus metropolitanus transcriptome. ZOOLOGICAL LETTERS 2024; 10:11. [PMID: 38902818 PMCID: PMC11191345 DOI: 10.1186/s40851-024-00233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND In gonochoristic animals, the sex determination pathway induces different morphological and behavioral features that can be observed between sexes, a condition known as sexual dimorphism. While many components of this sex differentiation cascade show high levels of diversity, factors such as the Doublesex-Mab-3-Related Transcription factor (DMRT) are widely conserved across animal taxa. Species of the phylum Tardigrada exhibit remarkable diversity in morphology and behavior between sexes, suggesting a pathway regulating this dimorphism. Despite the wealth of genomic and zoological knowledge accumulated in recent studies, the sexual differences in tardigrades genomes have not been identified. In the present study, we focused on the gonochoristic species Paramacrobiotus metropolitanus and employed omics analyses to unravel the molecular basis of sexual dimorphism. RESULTS Transcriptome analysis between sex-identified specimens revealed numerous differentially expressed genes, of which approximately 2,000 male-biased genes were focused on 29 non-male-specific genomic loci. From these regions, we identified two Macrobiotidae family specific DMRT paralogs, which were significantly upregulated in males and lacked sex specific splicing variants. Furthermore, phylogenetic analysis indicated all tardigrade genomes lack the doublesex ortholog, suggesting doublesex emerged after the divergence of Tardigrada. In contrast to sex-specific expression, no evidence of genomic differences between the sexes was found. We also identified several anhydrobiosis genes that exhibit sex-biased expression, suggesting a possible mechanism for protection of sex-specific tissues against extreme stress. CONCLUSIONS This study provides a comprehensive analysis for analyzing the genetic differences between sexes in tardigrades. The existence of male-biased, but not male-specific, genomic loci and identification of the family specific male-biased DMRT subfamily provides the foundation for understanding the sex determination cascade. In addition, sex-biased expression of several tardigrade-specific genes which are involved their stress tolerance suggests a potential role in protecting sex-specific tissue and gametes.
Collapse
Affiliation(s)
- Kenta Sugiura
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan
| | - Yuki Yoshida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Kohei Hayashi
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihoji, Tsuruoka, Yamagata, 997-0017, Japan
- Exploratory Research Center On Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Takekazu Kunieda
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Midori Matsumoto
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
6
|
Kondo K, Tanaka A, Kunieda T. Single-step generation of homozygous knockout/knock-in individuals in an extremotolerant parthenogenetic tardigrade using DIPA-CRISPR. PLoS Genet 2024; 20:e1011298. [PMID: 38870088 PMCID: PMC11175437 DOI: 10.1371/journal.pgen.1011298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Tardigrades are small aquatic invertebrates known for their remarkable tolerance to diverse extreme stresses. To elucidate the in vivo mechanisms underlying this extraordinary resilience, methods for genetically manipulating tardigrades have long been desired. Despite our prior success in somatic cell gene editing by microinjecting Cas9 ribonucleoproteins (RNPs) into the body cavity of tardigrades, the generation of gene-edited individuals remained elusive. In this study, employing an extremotolerant parthenogenetic tardigrade species, Ramazzottius varieornatus, we established conditions that led to the generation of gene-edited tardigrade individuals. Drawing inspiration from the direct parental CRISPR (DIPA-CRISPR) technique employed in several insects, we simply injected a concentrated Cas9 RNP solution into the body cavity of parental females shortly before their initial oviposition. This approach yielded gene-edited G0 progeny. Notably, only a single allele was predominantly detected at the target locus for each G0 individual, indicative of homozygous mutations. By co-injecting single-stranded oligodeoxynucleotides (ssODNs) with Cas9 RNPs, we achieved the generation of homozygously knocked-in G0 progeny, and these edited alleles were inherited by G1/G2 progeny. This is the first example of heritable gene editing in the entire phylum of Tardigrada. This establishment of a straightforward method for generating homozygous knockout/knock-in individuals not only facilitates in vivo analyses of the molecular mechanisms underpinning extreme tolerance, but also opens up avenues for exploring various topics, including Evo-Devo, in tardigrades.
Collapse
Affiliation(s)
- Koyuki Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Tsudanuma, Narashino, Chiba, Japan
| | - Akihiro Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
7
|
Clark-Hachtel CM, Hibshman JD, De Buysscher T, Stair ER, Hicks LM, Goldstein B. The tardigrade Hypsibius exemplaris dramatically upregulates DNA repair pathway genes in response to ionizing radiation. Curr Biol 2024; 34:1819-1830.e6. [PMID: 38614079 PMCID: PMC11078613 DOI: 10.1016/j.cub.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Tardigrades can survive remarkable doses of ionizing radiation, up to about 1,000 times the lethal dose for humans. How they do so is incompletely understood. We found that the tardigrade Hypsibius exemplaris suffers DNA damage upon gamma irradiation, but the damage is repaired. We show that this species has a specific and robust response to ionizing radiation: irradiation induces a rapid upregulation of many DNA repair genes. This upregulation is unexpectedly extreme-making some DNA repair transcripts among the most abundant transcripts in the animal. By expressing tardigrade genes in bacteria, we validate that increased expression of some repair genes can suffice to increase radiation tolerance. We show that at least one such gene is important in vivo for tardigrade radiation tolerance. We hypothesize that the tardigrades' ability to sense ionizing radiation and massively upregulate specific DNA repair pathway genes may represent an evolved solution for maintaining DNA integrity.
Collapse
Affiliation(s)
- Courtney M Clark-Hachtel
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Biology Department, The University of North Carolina at Asheville, Asheville, NC 28804, USA.
| | - Jonathan D Hibshman
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tristan De Buysscher
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bioinformatics & Analytics Research Collaborative, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Evan R Stair
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bob Goldstein
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Quiroga-Artigas G, Moriel-Carretero M. Storage cell proliferation during somatic growth establishes that tardigrades are not eutelic organisms. Biol Open 2024; 13:bio060299. [PMID: 38411464 PMCID: PMC10924213 DOI: 10.1242/bio.060299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
Tardigrades, microscopic ecdysozoans known for extreme environment resilience, were traditionally believed to maintain a constant cell number after completing embryonic development, a phenomenon termed eutely. However, sporadic reports of dividing cells have raised questions about this assumption. In this study, we explored tardigrade post-embryonic cell proliferation using the model species Hypsibius exemplaris. Comparing hatchlings to adults, we observed an increase in the number of storage cells, responsible for nutrient storage. We monitored cell proliferation via 5-ethynyl-2'-deoxyuridine (EdU) incorporation, revealing large numbers of EdU+ storage cells during growth, which starvation halted. EdU incorporation associated with molting, a vital post-embryonic development process involving cuticle renewal for further growth. Notably, DNA replication inhibition strongly reduced EdU+ cell numbers and caused molting-related fatalities. Our study is the first to demonstrate using molecular approaches that storage cells actively proliferate during tardigrade post-embryonic development, providing a comprehensive insight into replication events throughout their somatic growth. Additionally, our data underscore the significance of proper DNA replication in tardigrade molting and survival. This work definitely establishes that tardigrades are not eutelic, and offers insights into cell cycle regulation, replication stress, and DNA damage management in these remarkable creatures as genetic manipulation techniques emerge within the field.
Collapse
Affiliation(s)
- Gonzalo Quiroga-Artigas
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| |
Collapse
|
9
|
Heikes KL, Goldstein B. Expression patterns of FGF and BMP pathway genes in the tardigrade Hypsibius exemplaris. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577774. [PMID: 38352320 PMCID: PMC10862696 DOI: 10.1101/2024.01.29.577774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
A small number of conserved signaling pathways regulate development of most animals, yet we do not know where these pathways are deployed in most embryos. This includes tardigrades, a phylum with a unique body shape. We examined expression patterns of components of the BMP and FGF signaling pathways during embryonic segmentation and mesoderm development of the tardigrade Hypsibius exemplaris. Among the patterns examined, we found that an FGF ligand gene is expressed in ectodermal segment posteriors and an FGF receptor gene is expressed in underlying endomesodermal pouches, suggesting possible FGF signaling between these developing germ layers. We found that a BMP ligand gene is expressed in lateral ectoderm and dorsolateral bands along segment posteriors, while the BMP antagonist Sog gene is expressed in lateral ectoderm and also in a subset of endomesodermal cells, suggesting a possible role of BMP signaling in dorsal-ventral patterning of lateral ectoderm. In combination with known roles of these pathways during development of common model systems, we developed hypotheses for how the BMP and FGF pathways might regulate embryo segmentation and mesoderm formation of the tardigrade H. exemplaris. These results identify the expression patterns of genes from two conserved signaling pathways for the first time in the tardigrade phylum.
Collapse
Affiliation(s)
- Kira L. Heikes
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Tanaka A, Kunieda T. Considerations on the TardiVec-based analyses of tissue specificity and desiccation-induced supramolecular structure of target proteins. Proc Natl Acad Sci U S A 2023; 120:e2312563120. [PMID: 37983508 PMCID: PMC10691217 DOI: 10.1073/pnas.2312563120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Affiliation(s)
- Akihiro Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| |
Collapse
|
11
|
Heikes KL, Game M, Smith FW, Goldstein B. The embryonic origin of primordial germ cells in the tardigrade Hypsibius exemplaris. Dev Biol 2023; 497:42-58. [PMID: 36893882 DOI: 10.1016/j.ydbio.2023.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
Primordial germ cells (PGCs) give rise to gametes - cells necessary for the propagation and fertility of diverse organisms. Current understanding of PGC development is limited to the small number of organisms whose PGCs have been identified and studied. Expanding the field to include little-studied taxa and emerging model organisms is important to understand the full breadth of the evolution of PGC development. In the phylum Tardigrada, no early cell lineages have been identified to date using molecular markers. This includes the PGC lineage. Here, we describe PGC development in the model tardigrade Hypsibius exemplaris. The four earliest-internalizing cells (EICs) exhibit PGC-like behavior and nuclear morphology. The location of the EICs is enriched for mRNAs of conserved PGC markers wiwi1 (water bear piwi 1) and vasa. At early stages, both wiwi1 and vasa mRNAs are detectable uniformly in embryos, which suggests that these mRNAs do not serve as localized determinants for PGC specification. Only later are wiwi1 and vasa enriched in the EICs. Finally, we traced the cells that give rise to the four PGCs. Our results reveal the embryonic origin of the PGCs of H. exemplaris and provide the first molecular characterization of an early cell lineage in the tardigrade phylum. We anticipate that these observations will serve as a basis for characterizing the mechanisms of PGC development in this animal.
Collapse
Affiliation(s)
- Kira L Heikes
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Frank W Smith
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Abstract
During aging, animals experience a decline in proteostasis activity, including loss of stress-response activation, culminating in the accumulation of misfolded proteins and toxic aggregates, which are causal in the onset of some chronic diseases. Finding genetic and pharmaceutical treatments that can increase organismal proteostasis and lengthen life is an ongoing goal of current research. The regulation of stress responses by cell non-autonomous mechanisms appears to be a potent way to impact organismal healthspan. In this Review, we cover recent findings in the intersection of proteostasis and aging, with a special focus on articles and preprints published between November 2021 and October 2022. A significant number of papers published during this time increased our understanding of how cells communicate with each other during proteotoxic stress. Finally, we also draw attention to emerging datasets that can be explored to generate new hypotheses that explain age-related proteostasis collapse.
Collapse
Affiliation(s)
- Maximilian A. Thompson
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Evandro A. De-Souza
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
13
|
Heikes KL, Game M, Smith FW, Goldstein B. The Embryonic Origin of Primordial Germ Cells in the Tardigrade Hypsibius exemplaris. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522500. [PMID: 36824831 PMCID: PMC9948961 DOI: 10.1101/2023.01.02.522500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Primordial germ cells (PGCs) give rise to gametes â€" cells necessary for the propagation and fertility of diverse organisms. Current understanding of PGC development is limited to the small number of organisms whose PGCs have been identified and studied. Expanding the field to include little-studied taxa and emerging model organisms is important to understand the full breadth of the evolution of PGC development. In the phylum Tardigrada, no early cell lineages have been identified to date using molecular markers. This includes the PGC lineage. Here, we describe PGC development in the model tardigrade Hypsibius exemplaris . The four earliest-internalizing cells (EICs) exhibit PGC-like behavior and nuclear morphology. The location of the EICs is enriched for mRNAs of conserved PGC markers wiwi1 (water bear piwi 1) and vasa . At early stages, both wiwi1 and vasa mRNAs are detectable uniformly in embryos, which suggests that these mRNAs do not serve as localized determinants for PGC specification. Only later are wiwi1 and vasa enriched in the EICs. Finally, we traced the cells that give rise to the four PGCs. Our results reveal the embryonic origin of the PGCs of H. exemplaris and provide the first molecular characterization of an early cell lineage in the tardigrade phylum. We anticipate that these observations will serve as a basis for characterizing the mechanisms of PGC development in this animal.
Collapse
Affiliation(s)
- Kira L. Heikes
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Frank W. Smith
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Affiliation(s)
- Bob Goldstein
- Department of Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|