1
|
Zheng Y, Li G, Shi A, Guo J, Xu Y, Cai W. Role of miR-455-3p in the alleviation of LPS-induced acute lung injury by allicin. Heliyon 2024; 10:e39338. [PMID: 39502213 PMCID: PMC11535764 DOI: 10.1016/j.heliyon.2024.e39338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Acute lung injury (ALI) is a type of diffuse lung injury that seriously affects the survival of critically ill patients. MicroRNAs (miRNAs) can serve as promising therapeutic targets or offer insights for the development of potential therapeutic strategies against ALI. In our previous study, we demonstrated the protective effect of allicin in ALI, but the role of miRNAs in the alleviation of ALI by allicin remains unclear. This study aimed to investigate whether miRNAs mediate the effects of allicin on ALI. Cell viability and proliferation were determined using CCK-8 and EdU assays, respectively, while cellular apoptosis was analyzed by flow cytometry. The claudin-4 protein was detected by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) and western blotting. The binding of miR-455 with claudin-4 was determined by bioinformatics analysis and validated by dual luciferase reporter assays. The lung wet/dry ratio of lipopolysaccharide (LPS)-treated rats was determined by hematoxylin and eosin (HE) and TUNEL staining of the pulmonary tissues. The levels of myeloperoxidase (MPO), interleukin (IL)-2, IL-6, and tumor necrosis factor (TNF)-α were determined by enzyme-linked immunosorbent assay (ELISA). We observed that allicin alleviated LPS-induced injury in A549 cells, and claudin-4 knockdown reversed the protective effect of allicin in ALI. Claudin-4 is a direct target of miR-455-3p, and miR-455-3p overexpression partially reversed the protective effect of allicin in LPS-treated A549 cells. Subsequent in vivo experiments confirmed that allicin protects against LPS-induced ALI by regulating the miR-455-3p/claudin-4 axis. The study revealed that the protective effect of allicin in ALI is mediated via miR-455-3p, which suppresses the expression of claudin-4.
Collapse
Affiliation(s)
- Yueliang Zheng
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Gaoxiang Li
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Aili Shi
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junping Guo
- Rainbowfish Rehabilitation & Nursing School, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang, China
| | - Yingge Xu
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenwei Cai
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Siew ED, Hellwege JN, Hung AM, Birkelo BC, Vincz AJ, Parr SK, Denton J, Greevy RA, Robinson-Cohen C, Liu H, Susztak K, Matheny ME, Velez Edwards DR. Genome-wide association study of hospitalized patients and acute kidney injury. Kidney Int 2024; 106:291-301. [PMID: 38797326 PMCID: PMC11260539 DOI: 10.1016/j.kint.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 05/29/2024]
Abstract
Acute kidney injury (AKI) is a common and devastating complication of hospitalization. Here, we identified genetic loci associated with AKI in patients hospitalized between 2002-2019 in the Million Veteran Program and data from Vanderbilt University Medical Center's BioVU. AKI was defined as meeting a modified KDIGO Stage 1 or more for two or more consecutive days or kidney replacement therapy. Control individuals were required to have one or more qualifying hospitalizations without AKI and no evidence of AKI during any other observed hospitalizations. Genome-wide association studies (GWAS), stratified by race, adjusting for sex, age, baseline estimated glomerular filtration rate (eGFR), and the top ten principal components of ancestry were conducted. Results were meta-analyzed using fixed effects models. In total, there were 54,488 patients with AKI and 138,051 non-AKI individuals included in the study. Two novel loci reached genome-wide significance in the meta-analysis: rs11642015 near the FTO locus on chromosome 16 (obesity traits) (odds ratio 1.07 (95% confidence interval, 1.05-1.09)) and rs4859682 near the SHROOM3 locus on chromosome 4 (glomerular filtration barrier integrity) (odds ratio 0.95 (95% confidence interval, 0.93-0.96)). These loci colocalized with previous studies of kidney function, and genetic correlation indicated significant shared genetic architecture between AKI and eGFR. Notably, the association at the FTO locus was attenuated after adjustment for BMI and diabetes, suggesting that this association may be partially driven by obesity. Both FTO and the SHROOM3 loci showed nominal evidence of replication from diagnostic-code-based summary statistics from UK Biobank, FinnGen, and Biobank Japan. Thus, our large GWA meta-analysis found two loci significantly associated with AKI suggesting genetics may explain some risk for AKI.
Collapse
Affiliation(s)
- Edward D Siew
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA.
| | - Jacklyn N Hellwege
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adriana M Hung
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Bethany C Birkelo
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Andrew J Vincz
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Sharidan K Parr
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Jason Denton
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA
| | - Robert A Greevy
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cassianne Robinson-Cohen
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Hongbo Liu
- Division of Renal Electrolyte and Hypertension, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA; Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Division of Renal Electrolyte and Hypertension, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA; Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Michael E Matheny
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Digna R Velez Edwards
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Ai L, Li R, Wang X, Liu Z, Li Y. Tempol alleviates acute lung injury by affecting glutathione synthesis through Nrf2 and inhibiting ferroptosis in lung epithelial cells. J Biochem Mol Toxicol 2024; 38:e23674. [PMID: 38454815 DOI: 10.1002/jbt.23674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/12/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
As a life-threatening disease, acute lung injury (ALI) may progress to chronic pulmonary fibrosis. For the treatment of lung injury, Tempol is a superoxide dismutase mimetic and intracellular redox agent that can be a potential drug. This study investigated the regulatory mechanism of Tempol in the treatment of ALI. A mouse model of ALI was established, and HE staining was used to examine histomorphology. The CCK-8 assay was used to measure cell viability, and oxidative stress was assessed by corresponding kits. Flow cytometry and dichlorodihydrofluorescein diacetate staining assays were used to detect reactive oxygen species (ROS) levels. Protein expression levels were measured by Western blot analysis and ELISA. Pulmonary vascular permeability was used to measure the lung wet/dry weight ratio. The level of oxidative stress was increased in ALI mice, and the level of ferroptosis was upregulated. Tempol inhibited this effect and alleviated ALI. The administration of Tempol alleviated the pathological changes in ALI, inhibited pulmonary vascular permeability, and improved lung injury in ALI mice. The upregulation of genes essential for glutathione (GSH) metabolism induced by lipopolysaccharide (LPS) was inhibited by Tempol. In addition, nuclear factor-related factor 2 (Nrf2) is activated by Tempol therapy to regulate the de novo synthesis pathway of GSH, thereby alleviating LPS-induced lung epithelial cell damage. The results showed that Tempol alleviated ALI by activating the Nrf2 pathway to inhibit oxidative stress and ferroptosis in lung epithelial cells. In conclusion, this study demonstrates that Tempol alleviates ALI by inhibiting ferroptosis in lung epithelial cells through the effect of Nrf2 on GSH synthesis.
Collapse
Affiliation(s)
- Li Ai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ran Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaona Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhijuan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yongxia Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|