1
|
Sharma R, Wu K, Han K, Russo AC, Dagur PK, Combs CA, Yao X, Levine SJ, Sack MN. BLOC1S1 Control of Vacuolar Organelle Fidelity Modulates Murine T H2 Cell Immunity and Allergy Susceptibility. Allergy 2024. [PMID: 39737471 DOI: 10.1111/all.16461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND The levels of biogenesis of lysosome organelles complex 1 subunit 1 (BLOC1S1) control mitochondrial and endolysosome organelle homeostasis and function. Reduced fidelity of these vacuolar organelles is increasingly being recognized as important in instigating cell-autonomous immune cell activation. We reasoned that exploring the role of BLOC1S1 in CD4+ T cells may further advance our understanding of regulatory events linked to mitochondrial and/or endolysosomal function in adaptive immunity. METHODS CD4+ T cells were analyzed from control and CD4+ T-cell-specific BLOC1S1 knockout mice. Polarization profiles were assayed using biochemical and molecular signatures, and signaling pathways were disrupted pharmacologically or via siRNA. Mouse models of airway and skin inflammation were generated by Ovalbumin and MC903 exposure, respectively. RESULTS TH2 regulator GATA3 and phosphorylated STAT6 were preferentially induced in BLOC1S1-depleted primary CD4+ T (TKO) cells. The levels of IL-4, IL-5, and IL-13 were markedly induced in the absence of BLOC1S1. At the organelle level, mitochondrial DNA leakage evoked cGAS-STING and NF-κB pathway activation with subsequent TH2 polarization. The induction of autophagy with rapamycin reduced cytosolic mtDNA and reversed these TH2 signatures. Furthermore, genetic knockdown of STING and NF-κB inhibition ameliorated this immune regulatory cascade in TKO cells. Finally, at a functional level, TKO mice displayed an increased susceptibility to allergic conditions, including dermatitis and allergic asthma. CONCLUSIONS BLOC1S1 depletion in mouse CD4+ T cells mediated disruption of mitochondrial integrity to initiate a predominant TH2-responsive phenotype via STING-NF-κB-driven signaling of the canonical TH2 regulatory program.
Collapse
Affiliation(s)
- Rahul Sharma
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, Maryland, USA
| | - Kaiyuan Wu
- Cardiovascular Branch, NHLBI, NIH, Bethesda, Maryland, USA
| | - Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, Maryland, USA
| | - Anna Chiara Russo
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, Maryland, USA
| | | | | | - Xianglan Yao
- Critical Care Medicine and Pulmonary Branch, Bethesda, Maryland, USA
| | - Stewart J Levine
- Critical Care Medicine and Pulmonary Branch, Bethesda, Maryland, USA
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, Maryland, USA
- Cardiovascular Branch, NHLBI, NIH, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Raza S, Rajak S, Yen PM, Sinha RA. Autophagy and hepatic lipid metabolism: mechanistic insight and therapeutic potential for MASLD. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:19. [PMID: 39100919 PMCID: PMC11296953 DOI: 10.1038/s44324-024-00022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) originates from a homeostatic imbalance in hepatic lipid metabolism. Increased fat deposition in the liver of people suffering from MASLD predisposes them to develop further metabolic derangements, including diabetes mellitus, metabolic dysfunction-associated steatohepatitis (MASH), and other end-stage liver diseases. Unfortunately, only limited pharmacological therapies exist for MASLD to date. Autophagy, a cellular catabolic process, has emerged as a primary mechanism of lipid metabolism in mammalian hepatocytes. Furthermore, preclinical studies with autophagy modulators have shown promising results in resolving MASLD and mitigating its progress into deleterious liver pathologies. In this review, we discuss our current understanding of autophagy-mediated hepatic lipid metabolism, its therapeutic modulation for MASLD treatment, and current limitations and scope for clinical translation.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, 169857 Singapore
| | - Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| |
Collapse
|
3
|
Bugga P, Stoner MW, Manning JR, Mushala BAS, Bhattarai N, Sharifi-Sanjani M, Webster BR, Thapa D, Scott I. Validation of GCN5L1/BLOC1S1/BLOS1 antibodies using knockout cells and tissue. Biochem J 2024; 481:643-651. [PMID: 38683688 DOI: 10.1042/bcj20230302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
GCN5L1, also known as BLOC1S1 and BLOS1, is a small intracellular protein involved in many key biological processes. Over the last decade, GCN5L1 has been implicated in the regulation of protein lysine acetylation, energy metabolism, endo-lysosomal function, and cellular immune pathways. An increasing number of published papers have used commercially-available reagents to interrogate GCN5L1 function. However, in many cases these reagents have not been rigorously validated, leading to potentially misleading results. In this report we tested several commercially-available antibodies for GCN5L1, and found that two-thirds of those available did not unambiguously detect the protein by western blot in cultured mouse cells or ex vivo liver tissue. These data suggest that previously published studies which used these unverified antibodies to measure GCN5L1 protein abundance, in the absence of other independent methods of corroboration, should be interpreted with appropriate caution.
Collapse
Affiliation(s)
- Paramesha Bugga
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
| | - Michael W Stoner
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
| | - Janet R Manning
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
| | - Bellina A S Mushala
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
| | - Nisha Bhattarai
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
| | - Maryam Sharifi-Sanjani
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
| | - Bradley R Webster
- Department of Urology, Roswell Park Cancer Center, Buffalo, NY 14263, U.S.A
| | - Dharendra Thapa
- Department of Human Performance - Exercise Physiology, West Virginia University, Morgantown, WV 26506, U.S.A
| | - Iain Scott
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
| |
Collapse
|
4
|
Sharma R, Wu K, Han K, Russo AC, Dagur PK, Combs CA, Sack MN. BLOC1S1 control of vacuolar organelle fidelity modulates T H2 cell immunity and allergy susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586144. [PMID: 39803487 PMCID: PMC11722528 DOI: 10.1101/2024.03.21.586144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The levels of biogenesis of lysosome organelles complex 1 subunit 1 (BLOC1S1) control mitochondrial and endolysosome organelle homeostasis and function. Reduced fidelity of these vacuolar organelles is increasingly being recognized as important in instigating cell-autonomous immune cell activation. We reasoned that exploring the role of BLOC1S1 in CD4+ T cells, may further advance our understanding of regulatory events linked to mitochondrial and/or endolysosomal function in adaptive immunity. Transcript levels of the canonical transcription factors driving CD4+T cell polarization in response to activation showed that, the TH2 regulator GATA3 and phosphorylated STAT6 were preferentially induced in BLOC1S1 depleted primary CD4+ T (TKO) cells. In parallel, in response to both T cell receptor activation and in response to TH2 polarization the levels of IL-4, IL-5 and IL-13 were markedly induced in the absence of BLOC1S1. At the organelle level, mitochondrial DNA leakage evoked cGAS-STING and NF-kB pathway activation with subsequent TH2 polarization. The induction of autophagy with rapamycin reduced cytosolic mtDNA and reverses these TH2 signatures. Furthermore, genetic knockdown of STING and STING and NF-κB inhibition ameliorated this immune regulatory cascade in TKO cells. Finally, at a functional level, TKO mice displayed increased susceptible to allergic conditions including atopic dermatitis and allergic asthma. In conclusion, BLOC1S1 depletion mediated disruption of mitochondrial integrity to initiate a predominant TH2 responsive phenotype via STING-NF-κB driven signaling of the canonical TH2 regulatory program.
Collapse
Affiliation(s)
- Rahul Sharma
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Maryland, USA
| | - Kaiyuan Wu
- Cardiovascular Branch, NHLBI, NIH, Maryland, USA
| | - Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Maryland, USA
| | - Anna Chiara Russo
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Maryland, USA
| | | | | | - Michael N. Sack
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Maryland, USA
| |
Collapse
|
5
|
Bugga P, Stoner MW, Manning JR, Mushala BA, Thapa D, Scott I. Validation of GCN5L1/BLOC1S1/BLOS1 Antibodies Using Knockout Cells and Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550091. [PMID: 37503156 PMCID: PMC10370191 DOI: 10.1101/2023.07.21.550091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
GCN5L1, also known as BLOC1S1 and BLOS1, is a small intracellular protein involved in a number of key biological processes. Over the last decade, GCN5L1 has been implicated in the regulation of protein lysine acetylation, energy metabolism, endo-lysosomal function, and cellular immune pathways. An increasing number of published papers have used commercially-available reagents to interrogate GCN5L1 function. However, in many cases these reagents have not been rigorously validated, leading to potentially misleading results. In this report we tested several commercially-available antibodies for GCN5L1, and found that two-thirds of those available did not unambiguously detect the protein by western blot in cultured mouse cells or ex vivo liver tissue. These data suggest that previously published studies which used these unverified antibodies to measure GCN5L1 protein abundance, in the absence of other independent methods of corroboration, should be interpreted with appropriate caution.
Collapse
Affiliation(s)
- Paramesha Bugga
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Michael W. Stoner
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Janet R. Manning
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Bellina A.S. Mushala
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Dharendra Thapa
- Department of Human Performance - Exercise Physiology, West Virginia University, Morgantown, WV 26506
| | - Iain Scott
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
6
|
Lv T, Xiong X, Yan W, Liu M, Xu H, He Q. Mitochondrial general control of amino acid synthesis 5 like 1 promotes nonalcoholic steatohepatitis development through ferroptosis-induced formation of neutrophil extracellular traps. Clin Transl Med 2023; 13:e1325. [PMID: 37415391 PMCID: PMC10326373 DOI: 10.1002/ctm2.1325] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Mitochondria play central roles in metabolic diseases including nonalcoholic steatohepatitis (NASH). However, how mitochondria regulate NASH progression remains largely unknown. Our previous findings demonstrate that mitochondrial general control of amino acid synthesis 5 like 1 (GCN5L1) is associated with mitochondrial metabolism. Nevertheless, the roles of GCN5L1 in NASH are unclear. AIMS AND METHODS The GCN5L1 expression was detected in the fatty livers of NASH patients and animals. Hepatocyte-specific GCN5L1 deficiency or overexpression mice were used to induce NASH models by feeding with a high-fat/high-cholesterol or methionine-choline deficient diet. The molecular mechanisms underlying GCN5L1-regulated NASH were further explored and verified in mice. RESULTS AND CONCLUSIONS GCN5L1 expression was increased in NASH patients. Upregulated GCN5L1 level was also illustrated in NASH mice. Mice with hepatocyte-specific GCN5L1 conditional knockout improved the inflammatory response compared to GCN5L1flox/flox mice. However, overexpression of mitochondrial GCN5L1 augmented the inflammatory response. Mechanically, GCN5L1 acetylated CypD and enhanced its binding with ATP5B, which induced the opening of mitochondrial permeability transition pores and the release of mitochondrial ROS into the cytoplasm. The increased ROS promoted ferroptosis of hepatocytes and induced accumulation of high mobility group box 1 in the microenvironment, which recruited neutrophils and induced the generation of neutrophil extracellular traps (NETs). NETs block impaired GCN5L1-induced NASH progression. Furthermore, the upregulation of GCN5L1 in NASH was contributed by lipid overload-induced endoplasmic reticulum stress. Together, mitochondrial GCN5L1 has a vital function in promoting NASH progression by regulating oxidative metabolism and the hepatic inflammatory microenvironment. Thus, GCN5L1 might be a potential intervention target in NASH treatment.
Collapse
Affiliation(s)
- Tingting Lv
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Department of Cancer CenterShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Xiaofeng Xiong
- Department of GastroenterologyInstitute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Wei Yan
- Department of GastroenterologyInstitute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Mei Liu
- Department of GastroenterologyInstitute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Hongwei Xu
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Qin He
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|