1
|
Lloyd HC, Li Y, Payne NC, Zhao Z, Xu W, Kroupova A, Zollman D, Long T, Kabir F, Chen M, Freeman R, Feng EY, Xi S, Hsu YC, Ciulli A, Mazitschek R, Woo CM. A method for the detection and enrichment of endogenous cereblon substrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645063. [PMID: 40196695 PMCID: PMC11974815 DOI: 10.1101/2025.03.24.645063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
C-Terminal cyclic imides are posttranslational modifications on proteins that are recognized and removed by the E3 ligase substrate adapter cereblon (CRBN). Despite the observation of these modifications across the proteome by mass spectrometry-based proteomics, an orthogonal and generalizable method to visualize the C-terminal cyclic imide would enhance detection, sensitivity, and throughput of endogenous CRBN substrate characterization. Here we develop an antibody-like reagent, termed "cerebody," for visualizing and enriching C-terminal cyclic imide-modified proteins. We describe the engineering of CRBN derivatives to produce cerebody and use it to identify CRBN substrates by Western blot and enrichment from whole cell and tissue lysates. CRBN substrates identified by cerebody enrichment are mapped, validated, and further characterized for dependence on the C-terminal cyclic imide modification. These methods will accelerate the characterization of endogenous CRBN substrates and their regulation.
Collapse
Affiliation(s)
- Hannah C Lloyd
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yuli Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - N Connor Payne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zhenguang Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Wenqing Xu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alena Kroupova
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
| | - David Zollman
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
| | - Tengfang Long
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Farah Kabir
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Mei Chen
- Mass Spectrometry and Proteomics Resource (MSPRL), Division of Science, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Rebecca Freeman
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ethan Yang Feng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sarah Xi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Zhou Y, Garrigues SL, Villemure E, Ishisoko N, Nguyen HQ, Hamidi NK, Vogt R, Wang Y, Blake RA, Rudolph J, Nilewski C. Heteroaryl Glutarimides and Dihydrouracils as Cereblon Ligand Scaffolds for Molecular Glue Degrader Discovery. ACS Med Chem Lett 2024; 15:2158-2163. [PMID: 39691515 PMCID: PMC11647720 DOI: 10.1021/acsmedchemlett.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Stabilization of cereblon (CRBN)/neosubstrate complexes with molecular glues followed by degradation of those neosubstrates is an emerging strategy in drug discovery with compelling potential to target certain proteins that were previously considered to be undruggable. In this context, the discovery of novel CRBN ligands is an important area of ongoing research that holds promise to expand the scope of proteins that can be targeted through this mode of action. Herein, we describe the synthesis and evaluation of CRBN ligands featuring heteroaryl glutarimide and dihydrouracil scaffolds. We identified a subset of heteroaryl glutarimides exhibiting potent CRBN binding and increased chemical stability in cell culture media compared with traditional immunomodulatory drugs (IMiDs). This indicates that the scaffolds described herein could become useful starting points for the discovery of novel molecular glue degraders.
Collapse
Affiliation(s)
- Yuebiao Zhou
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Star L. Garrigues
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Elisia Villemure
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Noriko Ishisoko
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Huy Q. Nguyen
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nikkia K. Hamidi
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca Vogt
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yong Wang
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert A. Blake
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joachim Rudolph
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Christian Nilewski
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
3
|
Kroupova A, Spiteri VA, Rutter ZJ, Furihata H, Darren D, Ramachandran S, Chakraborti S, Haubrich K, Pethe J, Gonzales D, Wijaya AJ, Rodriguez-Rios M, Sturbaut M, Lynch DM, Farnaby W, Nakasone MA, Zollman D, Ciulli A. Design of a Cereblon construct for crystallographic and biophysical studies of protein degraders. Nat Commun 2024; 15:8885. [PMID: 39406745 PMCID: PMC11480361 DOI: 10.1038/s41467-024-52871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
The ubiquitin E3 ligase cereblon (CRBN) is the target of therapeutic drugs thalidomide and lenalidomide and is recruited by most targeted protein degraders (PROTACs and molecular glues) in clinical development. Biophysical and structural investigation of CRBN has been limited by current constructs that either require co-expression with the adaptor DDB1 or inadequately represent full-length protein, with high-resolution structures of degrader ternary complexes remaining rare. We present the design of CRBNmidi, a construct that readily expresses from E. coli with high yields as soluble, stable protein without DDB1. We benchmark CRBNmidi for wild-type functionality through a suite of biophysical techniques and solve high-resolution co-crystal structures of its binary and ternary complexes with degraders. We qualify CRBNmidi as an enabling tool to accelerate structure-based discovery of the next generation of CRBN based therapeutics.
Collapse
Grants
- Almirall, Protac Programme, 35480b_CRT (118945), 03.01.2021-31.12.2024 Boehringer Ingelheim, Building a Protac, 8144e_CRT (115737), 01.12.16-31.12.2025 EUbOPEN (CEC), Enabling and Unlocking Biology in the Open, 35733_GR (118810), 01.05.2020-30.04.2025 Eisai, Research Collaboration, 34788_CRT (118489), 01.07.19-30.09-2025 JSPS Fellowship, 03.04.2023 but no separate funding for consumables Tocris, Development of a Covalent BromoTag System, 39186_CRT (119776), 10.01.2023-10.01.2025
Collapse
Affiliation(s)
- Alena Kroupova
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Valentina A Spiteri
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Zoe J Rutter
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Hirotake Furihata
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Darren Darren
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
- Cancer Science Institute Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Sarath Ramachandran
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
- Biocon BMS R&D Center, Bommasandra Industrial Area, Bommasandra, Karnataka, 560099, India
| | - Sohini Chakraborti
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Kevin Haubrich
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Julie Pethe
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Denzel Gonzales
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
- Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Andre J Wijaya
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
- PT Kalbe Farma, Jl. Let. Jend Suprapto Kav 4, Kalbe Farma, Jakarta, 10510, Indonesia
| | - Maria Rodriguez-Rios
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Manon Sturbaut
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Dylan M Lynch
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - William Farnaby
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Mark A Nakasone
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - David Zollman
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK.
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK.
| |
Collapse
|
4
|
Touroutine D, Morozova N. A novel hypothesis about mechanism of thalidomide action on pattern formation. Biosystems 2024; 246:105344. [PMID: 39341546 DOI: 10.1016/j.biosystems.2024.105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Morphogenesis, the complex process governing the formation of functional living structures, is regulated by a multitude of molecular mechanisms at various levels. While research in recent decades has shed light on many pathways involved in morphogenesis, none singularly accounts for the precise geometric shapes of organisms and their components in space. To bridge this conceptual gap between specific molecular mechanisms and the creation of definitive morphological forms, we have proposed the "epigenetic code hypothesis" in our previous work. In this framework, "epigenetic" means any inheritable cellular information beyond the genetic code that regulates cell fate alongside genetic information. In this study, we conduct a comprehensive analysis of thalidomide's teratogenic effects through the lens of our proposed "epigenetic code" theory, revealing significant indirect support for our hypothesis. We also explore the structural and functional parallels between thalidomide and auxin.
Collapse
Affiliation(s)
| | - Nadya Morozova
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, Université Paris Saclay, Gif-sur-Yvette, France; Komarov Botanical Institute RAS, St-Petersburg, Russia.
| |
Collapse
|
5
|
Sievers J, Voget R, Lu F, Garchitorena KM, Ng YLD, Chau CH, Steinebach C, Figg WD, Krönke J, Gütschow M. Revisiting the antiangiogenic mechanisms of fluorinated thalidomide derivatives. Bioorg Med Chem Lett 2024; 110:129858. [PMID: 38917956 DOI: 10.1016/j.bmcl.2024.129858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Introduction of fluorine into bioactive molecules has attracted much attention in drug development. For example, tetrafluorination of the phthalimide moiety of immunomodulatory drugs (IMiDs) has a strong beneficial effect on the ability to inhibit angiogenesis. The neomorphic activity of E3 ligase complexes is induced by the binding of IMiDs to cereblon. We investigated that a set of eight thalidomide analogs, comprising non- and tetrafluorinated counterparts, did not induce the degradation of neomorphic substrates (IKZF3, GSPT1, CK1α, SALL4). Hence, the antiangiogenic activity of fluorinated IMiDs was not triggered by neosubstrate degradation features. A fluorine scanning of non-traditional IMiDs of the benzamido glutarimide chemotype was performed. By measuring the endothelial cell tube formation, no angiogenesis inhibitors were identified, confirming the narrow structure-activity window of IMiD-induced antiangiogenesis.
Collapse
Affiliation(s)
- Johannes Sievers
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Rabea Voget
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Feiteng Lu
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, D-12203 Berlin, Germany
| | - Kathleen M Garchitorena
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuen Lam Dora Ng
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, D-12203 Berlin, Germany
| | - Cindy H Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jan Krönke
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, D-12203 Berlin, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
6
|
Tsai JM, Nowak RP, Ebert BL, Fischer ES. Targeted protein degradation: from mechanisms to clinic. Nat Rev Mol Cell Biol 2024; 25:740-757. [PMID: 38684868 DOI: 10.1038/s41580-024-00729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Targeted protein degradation refers to the use of small molecules to induce the selective degradation of proteins. In its most common form, this degradation is achieved through ligand-mediated neo-interactions between ubiquitin E3 ligases - the principal waste disposal machines of a cell - and the protein targets of interest, resulting in ubiquitylation and subsequent proteasomal degradation. Notable advances have been made in biological and mechanistic understanding of serendipitously discovered degraders. This improved understanding and novel chemistry has not only provided clinical proof of concept for targeted protein degradation but has also led to rapid growth of the field, with dozens of investigational drugs in active clinical trials. Two distinct classes of protein degradation therapeutics are being widely explored: bifunctional PROTACs and molecular glue degraders, both of which have their unique advantages and challenges. Here, we review the current landscape of targeted protein degradation approaches and how they have parallels in biological processes. We also outline the ongoing clinical exploration of novel degraders and provide some perspectives on the directions the field might take.
Collapse
Affiliation(s)
- Jonathan M Tsai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Li M. IKZF2 Degradation: It's Time to Take into Account it When Designing Cereblon-Based PROTACs. Chembiochem 2024; 25:e202400365. [PMID: 38802326 DOI: 10.1002/cbic.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Proteolysis-targeting chimera (PROTAC) has become a very important means of protein degradation and a new way of disease treatment. In particular, PROTACs constructed with ligands for E3 ligase cereblon account for more than 90 % of the PROTACs currently in clinical research. Notably, CRBN ligands themselves are a class of molecular glue compounds capable of degrading neo-substrate proteins. Compared to the target proteins degradation, the degradation of neo-substrates, especially IKZF2, has not received enough attention. Therefore, this review summarizes the currently published IKZF2 degraders derived from articles and patents, which are conducive to the design of PROTACs with desired IKZF2 degradation from the perspective of medicinal chemistry.
Collapse
Affiliation(s)
- Minglei Li
- Chemical Biology Center, School of Pharmaceutical Sciences & Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- School of Pharmaceutical Sciences & Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| |
Collapse
|
8
|
Nutt MJ, Stewart SG. Strengthening Molecular Glues: Design Strategies for Improving Thalidomide Analogs as Cereblon Effectors and Anticancer Agents. Drug Discov Today 2024; 29:104010. [PMID: 38704021 DOI: 10.1016/j.drudis.2024.104010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
In the two decades since a novel thalidomide analog was last approved, many promising drug candidates have emerged with remarkable potency as targeted protein degraders. Likewise, the advent of PROTACs for suppressing 'undruggable' protein targets reinforces the need for new analogs with improved cereblon affinity, target selectivity and drug-like properties. However, thalidomide and its approved derivatives remain plagued by several shortcomings, such as structural instability and poor solubility. Herein, we present a review of strategies for mitigating these shortcomings and highlight contemporary drug discovery approaches that have generated novel thalidomide analogs with enhanced efficacy as cereblon effectors and/or anticancer agents.
Collapse
Affiliation(s)
- Michael J Nutt
- School of Molecular Sciences, University of Western Australia, 35 Stirling Hwy, Crawley 6009, Australia.
| | - Scott G Stewart
- School of Molecular Sciences, University of Western Australia, 35 Stirling Hwy, Crawley 6009, Australia.
| |
Collapse
|
9
|
Shevalev R, Bischof L, Sapegin A, Bunev A, Olga G, Kantin G, Kalinin S, Hartmann MD. Discovery and characterization of potent spiro-isoxazole-based cereblon ligands with a novel binding mode. Eur J Med Chem 2024; 270:116328. [PMID: 38552426 DOI: 10.1016/j.ejmech.2024.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 04/21/2024]
Abstract
The vast majority of current cereblon (CRBN) ligands is based on the thalidomide scaffold, relying on glutarimide as the core binding moiety. With this architecture, most of these ligands inherit the overall binding mode, interactions with neo-substrates, and thereby potentially also the cytotoxic and teratogenic properties of the parent thalidomide. In this work, by incorporating a spiro-linker to the glutarimide moiety, we have generated a new chemotype that exhibits an unprecedented binding mode for glutarimide-based CRBN ligands. In total, 16 spirocyclic glutarimide derivatives incorporating an isoxazole moiety were synthesized and tested for different criteria. In particular, all ligands showed a favorable lipophilicity, and several were able to outperform the binding affinity of thalidomide as a reference. In addition, all compounds showed favorable cytotoxicity profiles in myeloma cell lines and human peripheral blood mononuclear cells. The novel binding mode, which we determined in co-crystal structures, provides explanations for these improved properties: The incorporation of the spiro-isoxazole changes both the conformation of the glutarimide moiety within the canonical tri-trp pocket and the orientation of the protruding moiety. In this new orientation it forms additional hydrophobic interactions and is not available for direct interactions with the canonical neo-substrates. We therefore propose this chemotype as an attractive building block for the design of PROTACs.
Collapse
Affiliation(s)
- Robert Shevalev
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Luca Bischof
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Alexander Sapegin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Alexander Bunev
- Medicinal Chemistry Center, Togliatti State University, Togliatti, Russia
| | - Grigor'eva Olga
- Medicinal Chemistry Center, Togliatti State University, Togliatti, Russia
| | - Grigory Kantin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Stanislav Kalinin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia.
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
10
|
Jiang W, Jiang Y, Luo Y, Qiao W, Yang T. Facilitating the development of molecular glues: Opportunities from serendipity and rational design. Eur J Med Chem 2024; 263:115950. [PMID: 37984298 DOI: 10.1016/j.ejmech.2023.115950] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Molecular glues can specifically induce interactions between two or more proteins to modulate biological functions and have been proven to be a powerful therapeutic modality in drug discovery. It plays a variety of vital roles in several biological processes, such as complex stabilization, interactome modulation and transporter inhibition, thus enabling challenging therapeutic targets to be druggable. Most known molecular glues were identified serendipitously, such as IMiDs, auxin, and rapamycin. In recent years, more rational strategies were explored with the development of chemical biology and a deep understanding of the interaction between molecular glues and proteins, which led to the rational discovery of several molecular glues. Thus, in this review, we aim to highlight the discovery strategies of molecular glues from three aspects: serendipitous discovery, screening methods and rational design principles. We expect that this review will provide a reasonable reference and insights for the discovery of molecular glues.
Collapse
Affiliation(s)
- Weiqing Jiang
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunhan Jiang
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Steinebach C, Bricelj A, Murgai A, Sosič I, Bischof L, Ng YLD, Heim C, Maiwald S, Proj M, Voget R, Feller F, Košmrlj J, Sapozhnikova V, Schmidt A, Zuleeg MR, Lemnitzer P, Mertins P, Hansen FK, Gütschow M, Krönke J, Hartmann MD. Leveraging Ligand Affinity and Properties: Discovery of Novel Benzamide-Type Cereblon Binders for the Design of PROTACs. J Med Chem 2023; 66:14513-14543. [PMID: 37902300 PMCID: PMC10641816 DOI: 10.1021/acs.jmedchem.3c00851] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/11/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023]
Abstract
Immunomodulatory imide drugs (IMiDs) such as thalidomide, pomalidomide, and lenalidomide are the most common cereblon (CRBN) recruiters in proteolysis-targeting chimera (PROTAC) design. However, these CRBN ligands induce the degradation of IMiD neosubstrates and are inherently unstable, degrading hydrolytically under moderate conditions. In this work, we simultaneously optimized physiochemical properties, stability, on-target affinity, and off-target neosubstrate modulation features to develop novel nonphthalimide CRBN binders. These efforts led to the discovery of conformationally locked benzamide-type derivatives that replicate the interactions of the natural CRBN degron, exhibit enhanced chemical stability, and display a favorable selectivity profile in terms of neosubstrate recruitment. The utility of the most potent ligands was demonstrated by their transformation into potent degraders of BRD4 and HDAC6 that outperform previously described reference PROTACs. Together with their significantly decreased neomorphic ligase activity on IKZF1/3 and SALL4, these ligands provide opportunities for the design of highly selective and potent chemically inert proximity-inducing compounds.
Collapse
Affiliation(s)
| | - Aleša Bricelj
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Arunima Murgai
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Izidor Sosič
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Luca Bischof
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
| | - Yuen Lam Dora Ng
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Christopher Heim
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
| | - Samuel Maiwald
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
| | - Matic Proj
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Rabea Voget
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Felix Feller
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, SI 1000 Ljubljana, Slovenia
| | - Valeriia Sapozhnikova
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
- Max
Delbrück
Center for Molecular Medicine, D-13125 Berlin, Germany
- German
Cancer Consortium (DKTK), Partner Site Berlin, DKFZ, D-69120 Heidelberg, Germany
| | - Annika Schmidt
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Maximilian Rudolf Zuleeg
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Patricia Lemnitzer
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Philipp Mertins
- Max
Delbrück
Center for Molecular Medicine, D-13125 Berlin, Germany
- Berlin
Institute of Health, D-10178 Berlin, Germany
| | - Finn K. Hansen
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Jan Krönke
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK), Partner Site Berlin, DKFZ, D-69120 Heidelberg, Germany
| | - Marcus D. Hartmann
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
- Interfaculty
Institute of Biochemistry, University of
Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
12
|
Zhang SH, Zeng N, Sun JX, Liu CQ, Xu JZ, Xu MY, An Y, Zhong XY, Ma SY, He HD, Xia QD, Hu J, Wang SG. Pan-cancer analysis reveals the prognostic and immunologic roles of cereblon and its significance for PROTAC design. Heliyon 2023; 9:e16644. [PMID: 37303568 PMCID: PMC10248115 DOI: 10.1016/j.heliyon.2023.e16644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Background Cereblon (CRBN) has emerged as a vital E3 ubiquitin ligase for Proteolysis-targeting chimera (PROTAC) design. However, few studies focus on the physiological mechanism of CRBN, and more studies are needed to explore the influence of CRBN on tumorigenesis. This pan-cancer analysis aims to explore the prognostic and immunologic roles of CRBN, and provide new insight for CRBN into cancer treatment and PROTAC design. Methods The TCGA database, TIMER 2.0 database, and TISIDB database were used to analyze the role of CRBN in pan-cancer. Multiple bioinformatic methods (ssGSEA, Kaplan-Meier, univariate cox regression, ESTIMATE, CIBERSORT) were applied to investigate the CRBN expression status, gene activity, prognostic values, and its correlation with immune scores, immune infiltration, immune-related functions, HALLMARKs functions, and response to immunotherapy in pan-cancer. Results In most cancer types, the expression and activity of CRBN in tumor groups were lower compared with normal groups. Upregulated CRBN expression may indicate a better prognosis for cancer patients. The Immune score, stromal score, and tumor purity varied greatly among different cancer types. GSEA analysis showed that high CRBN expression was correlated with the downregulation of tumor-promoting signaling pathways. The level of CRBN was associated with Tumor mutation burden (TMB), Microsatellite instability (MSI), objective response rate (ORR), and immune cell infiltration in a few cancer types. Conclusion Pan-cancer analysis reveals the potential role of CRBN as a prognostic biomarker and versatile immunologic roles in different cancer types. Upregulated expression of CRBN may be beneficial to CRBN-related immunotherapy and PROTAC design.
Collapse
|
13
|
Han X, Sun Y. PROTACs: A novel strategy for cancer drug discovery and development. MedComm (Beijing) 2023; 4:e290. [PMID: 37261210 PMCID: PMC10227178 DOI: 10.1002/mco2.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Proteolysis targeting chimera (PROTAC) technology has become a powerful strategy in drug discovery, especially for undruggable targets/proteins. A typical PROTAC degrader consists of three components: a small molecule that binds to a target protein, an E3 ligase ligand (consisting of an E3 ligase and its small molecule recruiter), and a chemical linker that hooks first two components together. In the past 20 years, we have witnessed advancement of multiple PROTAC degraders into the clinical trials for anticancer therapies. However, one of the major challenges of PROTAC technology is that only very limited number of E3 ligase recruiters are currently available as E3 ligand for targeted protein degradation (TPD), although human genome encodes more than 600 E3 ligases. Thus, there is an urgent need to identify additional effective E3 ligase recruiters for TPD applications. In this review, we summarized the existing RING-type E3 ubiquitin ligase and their small molecule recruiters that act as effective E3 ligands of PROTAC degraders and their application in anticancer drug discovery. We believe that this review could serve as a reference in future development of efficient E3 ligands of PROTAC technology for cancer drug discovery and development.
Collapse
Affiliation(s)
- Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
- Research Center for Life Science and Human HealthBinjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|