1
|
Yang X, Zhou S, Zeng J, Zhang S, Li M, Yue F, Chen Z, Dong Y, Zeng Y, Luo J. A biodegradable lipid nanoparticle delivers a Cas9 ribonucleoprotein for efficient and safe in situ genome editing in melanoma. Acta Biomater 2024:S1742-7061(24)00622-6. [PMID: 39461690 DOI: 10.1016/j.actbio.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
The development of melanoma is closely related to Braf gene, which is a suitable target for CRISPR/Cas9 based gene therapy. CRISPR/Cas9-sgRNA ribonucleoprotein complexes (RNPs) stand out as the safest format compared to plasmid and mRNA delivery. Similarly, lipid nanoparticles (LNPs) emerge as a safer alternative to viral vectors for delivering the CRISPR/Cas9-sgRNA gene editing system. Herein, we have designed multifunctional cationic LNPs specifically tailored for the efficient delivery of Cas9 RNPs targeting the mouse Braf gene through transdermal delivery, aiming to treat mouse melanoma. LNPs are given a positive charge by the addition of a newly synthesized polymer, deoxycholic acid modified polyethyleneimine (PEI-DOCA). Positive charge enables LNPs to be delivered in vivo by binding to negatively charged cell membranes and proteins, thereby facilitating efficient skin penetration and enhancing the delivery of RNPs into melanoma cells for gene editing purposes. Our research demonstrates that these LNPs enhance drug penetration through the skin, successfully delivering the Cas9 RNPs system and specifically targeting the Braf gene. Cas9 RNPs loaded LNPs exert a notable impact on gene editing in melanoma cells, significantly suppressing their proliferation. Furthermore, in mice experiments, the LNPs exhibited skin penetration and tumor targeting capabilities. This innovative LNPs delivery system offers a promising gene therapy approach for melanoma treatment and provides fresh insights into the development of safe and effective delivery systems for Cas9 RNPs in vivo. STATEMENT OF SIGNIFICANCE: CRISPR/Cas9 technology brings new hope for cancer treatment. Cas9 ribonucleoprotein offers direct genome editing, yet delivery challenges persist. For melanoma, transdermal delivery minimizes toxicity but faces skin barrier issues. We designed multifunctional lipid nanoparticles (LNPs) for Cas9 RNP delivery targeting the Braf gene. With metal microneedle pretreatment, our LNPs effectively edited melanoma cells, reducing Braf expression and inhibiting tumor growth. Our study demonstrates LNPs' potential for melanoma therapy and paves the way for efficient in vivo Cas9 RNP delivery systems in cancer therapy.
Collapse
Affiliation(s)
- Xiaopeng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Songli Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Jingyi Zeng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Suqin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Meng Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Feifan Yue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhaoyi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| | - Yingchun Zeng
- School of Pharmacy, Chengdu Medical College, Chengdu, China.
| | - Jingwen Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
2
|
Chu Z, Li Z, Yong H, Che D, Li B, Yan C, Zhou T, Wang X, Feng Y, Guo K, Geng S. Enhanced gene transfection and induction of apoptosis in melanoma cells by branched poly(β-amino ester)s with uniformly distributed branching units. J Control Release 2024; 367:197-208. [PMID: 38246205 DOI: 10.1016/j.jconrel.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Melanoma, one of the most devastating forms of skin cancer, currently lacks effective clinical treatments. Delivery of functional genes to modulate specific protein expression to induce melanoma cell apoptosis could be a promising therapeutic approach. However, transfecting melanoma cells using non-viral methods, particularly with cationic polymers, presents significant challenges. In this study, we synthesized three branched poly(β-amino ester)s (HPAEs) with evenly distributed branching units but varying space lengths through a two-step "oligomer combination" strategy. The unique topological structure enables HPAEs to condense DNA to form nano-sized polyplexes with favorable physiochemical properties. Notably, HPAEs, especially HPAE-2 with intermediate branching unit space length, demonstrated significantly higher gene transfection efficiency than the leading commercial gene transfection reagent, jetPRIME, in human melanoma cells. Furthermore, HPAE-2 efficiently delivered the Bax-encoding plasmid into melanoma cells, leading to a pronounced pro-apoptotic effect without causing noticeable cytotoxicity. This study establishes a potent non-viral platform for gene transfection of melanoma cells by harnessing the distribution of branching units, paving the way for potential clinical applications of gene therapy in melanoma treatment.
Collapse
Affiliation(s)
- Zhaowei Chu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Delu Che
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Bingjie Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Cong Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tong Zhou
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xi Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuqing Feng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kun Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|