1
|
Scott H, Occhialini A, Lenaghan SC, Beal J. Simulations predict stronger CRISPRi transcriptional repression in plants for identical than heterogeneous gRNA target sites. Synth Biol (Oxf) 2025; 10:ysae020. [PMID: 40255684 PMCID: PMC12007490 DOI: 10.1093/synbio/ysae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/26/2024] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Plant synthetic biologists have been working to adapt the CRISPRa and CRISPRi promoter regulation methods for applications such as improving crops or installing other valuable pathways. With other organisms, strong transcriptional control has typically required multiple gRNA target sites, which poses a critical engineering choice between heterogeneous sites, which allow each gRNA to target existing locations in a promoter, and identical sites, which typically require modification of the promoter. Here, we investigate the consequences of this choice for CRISPRi plant promoter regulation via simulation-based analysis, using model parameters based on single gRNA regulation and constitutive promoters in Nicotiana benthamiana and Arabidopsis thaliana. Using models of 2-6 gRNA target sites to compare heterogeneous versus identical sites for tunability, sensitivity to parameter values, and sensitivity to cell-to-cell variation, we find that identical gRNA target sites are predicted to yield far more effective transcriptional repression than heterogeneous sites.
Collapse
Affiliation(s)
- Helen Scott
- Intelligent Software and Systems, RTX BBN Technologies, 10 Moulton St., Cambridge, MA 02138, USA
| | - Alessandro Occhialini
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, Knoxville, TN 37996, USA
| | - Scott C Lenaghan
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, Knoxville, TN 37996, USA
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Jacob Beal
- Intelligent Software and Systems, RTX BBN Technologies, 10 Moulton St., Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Kulsoom, Ali W, Wang F. Advancement in synthetic gene circuits engineering: An alternative strategy for microRNA imaging and disease theranostics. Biotechnol Adv 2025; 79:108518. [PMID: 39798857 DOI: 10.1016/j.biotechadv.2025.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/26/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Gene circuits, which are genetically engineered systems designed to regulate gene expression, are emerging as powerful tools in disease theranostics, especially in mammalian cells. This review explores the latest advances in the design and application of gene circuits for detecting and treating various diseases. Synthetic gene circuits, inspired by electronic systems, offer precise control over therapeutic gene activity, allowing for real-time, user-defined responses to pathological signals. Notable applications include synZiFTRs for T-cell-based cancer therapies, immunomagnetic circuits for combating antibiotic-resistant infections like MRSA, and caffeine-induced circuits for managing type-2 diabetes. Additionally, advanced designs such as TetR-Elk1 circuits for reversing insulin resistance, RNAi circuits for targeting cancer cells, and synthetic circuits for managing metabolic conditions like urate homeostasis and diet-induced obesity are highlighted. These gene circuits, tailored for mammalian cells, showcase immense potential in gene- and cell-based therapies for complex metabolic and immune-related disorders, paving the way for precise, customizable treatments. The review focuses on the use of these circuits in mammalian systems and emphasizes their therapeutic implications, offering insights into future developments in disease treatment.
Collapse
Affiliation(s)
- Kulsoom
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wajahat Ali
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Fu Wang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
3
|
Xu X, Sun Y, Zhang A, Li S, Zhang S, Chen S, Lou C, Cai L, Chen Y, Luo C, Yin WB. Quantitative Characterization of Gene Regulatory Circuits Associated With Fungal Secondary Metabolism to Discover Novel Natural Products. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407195. [PMID: 39467708 DOI: 10.1002/advs.202407195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Microbial genetic circuits are vital for regulating gene expression and synthesizing bioactive compounds. However, assessing their strength and timing, especially in multicellular fungi, remains challenging. Here, an advanced microfluidic platform is combined with a mathematical model enabling precise characterization of fungal gene regulatory circuits (GRCs) at the single-cell level. Utilizing this platform, the expression intensity and timing of 30 transcription factor-promoter combinations derived from two representative fungal GRCs, using the model fungus Aspergillus nidulans are determined. As a proof of concept, the selected GRC combination is utilized to successfully refactor the biosynthetic pathways of bioactive molecules, precisely control their production, and activate the expression of the silenced biosynthetic gene clusters (BGCs). This study provides insights into microbial gene regulation and highlights the potential of platform in fungal synthetic biology applications and the discovery of novel natural products.
Collapse
Affiliation(s)
- Xinran Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanhong Sun
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Anxin Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sijia Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Shu Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Sijing Chen
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Chunbo Lou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yihua Chen
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Chunxiong Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, P. R. China
- Wenzhou Institute University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Mishra S, Sharma A, Srivastava AK. Ascorbic acid: a metabolite switch for designing stress-smart crops. Crit Rev Biotechnol 2024; 44:1350-1366. [PMID: 38163756 DOI: 10.1080/07388551.2023.2286428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
Plant growth and productivity are continually being challenged by a diverse array of abiotic stresses, including: water scarcity, extreme temperatures, heavy metal exposure, and soil salinity. A common theme in these stresses is the overproduction of reactive oxygen species (ROS), which disrupts cellular redox homeostasis causing oxidative damage. Ascorbic acid (AsA), commonly known as vitamin C, is an essential nutrient for humans, and also plays a crucial role in the plant kingdom. AsA is synthesized by plants through the d-mannose/l-galactose pathway that functions as a powerful antioxidant and protects plant cells from ROS generated during photosynthesis. AsA controls several key physiological processes, including: photosynthesis, respiration, and carbohydrate metabolism, either by acting as a co-factor for metabolic enzymes or by regulating cellular redox-status. AsA's multi-functionality uniquely positions it to integrate and recalibrate redox-responsive transcriptional/metabolic circuits and essential biological processes, in accordance to developmental and environmental cues. In recognition of this, we present a systematic overview of current evidence highlighting AsA as a central metabolite-switch in plants. Further, a comprehensive overview of genetic manipulation of genes involved in AsA metabolism has been provided along with the bottlenecks and future research directions, that could serve as a framework for designing "stress-smart" crops in future.
Collapse
Affiliation(s)
- Shefali Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ankush Sharma
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
5
|
Ntelkis N, Goossens A, Šola K. Cell type-specific control and post-translational regulation of specialized metabolism: opening new avenues for plant metabolic engineering. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102575. [PMID: 38901289 DOI: 10.1016/j.pbi.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
Although plant metabolic engineering enables the sustainable production of valuable metabolites with many applications, we still lack a good understanding of many multi-layered regulatory networks that govern metabolic pathways at the metabolite, protein, transcriptional and cellular level. As transcriptional regulation is better understood and often reviewed, here we highlight recent advances in the cell type-specific and post-translational regulation of plant specialized metabolism. With the advent of single-cell technologies, we are now able to characterize metabolites and their transcriptional regulators at the cellular level, which can refine our searches for missing biosynthetic enzymes and cell type-specific regulators. Post-translational regulation through enzyme inhibition, protein phosphorylation and ubiquitination are clearly evident in specialized metabolism regulation, but not frequently studied or considered in metabolic engineering efforts. Finally, we contemplate how advances in cell type-specific and post-translational regulation can be applied in metabolic engineering efforts in planta, leading to optimization of plants as metabolite production vehicles.
Collapse
Affiliation(s)
- Nikolaos Ntelkis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium; Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa.
| | - Krešimir Šola
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| |
Collapse
|
6
|
Wang F, Zang Z, Zhao Q, Xiaoyang C, Lei X, Wang Y, Ma Y, Cao R, Song X, Tang L, Deyholos MK, Zhang J. Advancement of Research Progress on Synthesis Mechanism of Cannabidiol (CBD). ACS Synth Biol 2024; 13:2008-2018. [PMID: 38900848 PMCID: PMC11264327 DOI: 10.1021/acssynbio.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Cannabis sativa L. is a multipurpose crop with high value for food, textiles, and other industries. Its secondary metabolites, including cannabidiol (CBD), have potential for broad application in medicine. With the CBD market expanding, traditional production may not be sufficient. Here we review the potential for the production of CBD using biotechnology. We describe the chemical and biological synthesis of cannabinoids, the associated enzymes, and the application of metabolic engineering, synthetic biology, and heterologous expression to increasing production of CBD.
Collapse
Affiliation(s)
- Fu Wang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Zhenyuan Zang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Qian Zhao
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Chunxiao Xiaoyang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xiujuan Lei
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Yingping Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Yiqiao Ma
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Rongan Cao
- College
of Food Science, Heilongjiang Bayi Agricultural
University, Daqing 163319, China
| | - Xixia Song
- Institute
of Industrial Crops of Heilongjiang Academy of Agricultural Sciences, Haerbin 150000, China
| | - Lili Tang
- Institute
of Industrial Crops of Heilongjiang Academy of Agricultural Sciences, Haerbin 150000, China
| | - Michael K. Deyholos
- Department
of Biology, University of British Columbia,
Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Jian Zhang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Department
of Biology, University of British Columbia,
Okanagan, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
7
|
Ferreira SS, Antunes MS. Genetically encoded Boolean logic operators to sense and integrate phenylpropanoid metabolite levels in plants. THE NEW PHYTOLOGIST 2024; 243:674-687. [PMID: 38752334 DOI: 10.1111/nph.19823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
Synthetic biology has the potential to revolutionize biotechnology, public health, and agriculture. Recent studies have shown the enormous potential of plants as chassis for synthetic biology applications. However, tools to precisely manipulate metabolic pathways for bioproduction in plants are still needed. We used bacterial allosteric transcription factors (aTFs) that control gene expression in a ligand-specific manner and tested their ability to repress semi-synthetic promoters in plants. We also tested the modulation of their repression activity in response to specific plant metabolites, especially phenylpropanoid-related molecules. Using these aTFs, we also designed synthetic genetic circuits capable of computing Boolean logic operations. Three aTFs, CouR, FapR, and TtgR, achieved c. 95% repression of their respective target promoters. For TtgR, a sixfold de-repression could be triggered by inducing its ligand accumulation, showing its use as biosensor. Moreover, we designed synthetic genetic circuits that use AND, NAND, IMPLY, and NIMPLY Boolean logic operations and integrate metabolite levels as input to the circuit. We showed that biosensors can be implemented in plants to detect phenylpropanoid-related metabolites and activate a genetic circuit that follows a predefined logic, demonstrating their potential as tools for exerting control over plant metabolic pathways and facilitating the bioproduction of natural products.
Collapse
Affiliation(s)
- Savio S Ferreira
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Mauricio S Antunes
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|