1
|
Duława-Kobeluszczyk J, Strzałka A, Tracz M, Bartyńska M, Pawlikiewicz K, Łebkowski T, Wróbel S, Szymczak J, Zarek A, Małecki T, Jakimowicz D, Szafran M. The activity of CobB1 protein deacetylase contributes to nucleoid compaction in Streptomyces venezuelae spores by increasing HupS affinity for DNA. Nucleic Acids Res 2024; 52:7112-7128. [PMID: 38783097 PMCID: PMC11229371 DOI: 10.1093/nar/gkae418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Streptomyces are soil bacteria with complex life cycle. During sporulation Streptomyces linear chromosomes become highly compacted so that the genetic material fits within limited spore volume. The key players in this process are nucleoid-associated proteins (NAPs). Among them, HU (heat unstable) proteins are the most abundant NAPs in the cell and the most conserved in bacteria. HupS, one of the two HU homologues encoded by the Streptomyces genome, is the best-studied spore-associated NAP. In contrast to other HU homologues, HupS contains a long, C-terminal domain that is extremely rich in lysine repeats (LR domain) similar to eukaryotic histone H2B and mycobacterial HupB protein. Here, we have investigated, whether lysine residues in HupS are posttranslationally modified by reversible lysine acetylation. We have confirmed that Streptomyces venezuelae HupS is acetylated in vivo. We showed that HupS binding to DNA in vitro is controlled by the acetylation. Moreover, we identified that CobB1, one of two Sir2 homologues in Streptomyces, controls HupS acetylation levels in vivo. We demonstrate that the elimination of CobB1 increases HupS mobility, reduces chromosome compaction in spores, and affects spores maturation. Thus, our studies indicate that HupS acetylation affects its function by diminishing DNA binding and disturbing chromosome organization.
Collapse
Affiliation(s)
| | | | - Michał Tracz
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | | | | | - Tomasz Łebkowski
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Sara Wróbel
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Justyna Szymczak
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Anna Zarek
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Tomasz Małecki
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | | | - Marcin J Szafran
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| |
Collapse
|
2
|
Ozeki Y, Yokoyama A, Nishiyama A, Yoshida Y, Ohara Y, Mashima T, Tomiyama C, Shaban AK, Takeishi A, Osada-Oka M, Yamaguchi T, Tateishi Y, Maeyama JI, Hakamata M, Moro H, Kikuchi T, Hayashi D, Suzuki F, Yamamoto T, Iho S, Katahira M, Yamamoto S, Matsumoto S. Recombinant mycobacterial DNA-binding protein 1 with post-translational modifications boosts IFN-gamma production from BCG-vaccinated individuals' blood cells in combination with CpG-DNA. Sci Rep 2024; 14:9141. [PMID: 38644371 PMCID: PMC11033290 DOI: 10.1038/s41598-024-58836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/03/2024] [Indexed: 04/23/2024] Open
Abstract
Tuberculosis remains a large health threat, despite the availability of the tuberculosis vaccine, BCG. As BCG efficacy gradually decreases from adolescence, BCG-Prime and antigen-booster may be an efficient strategy to confer vaccine efficacy. Mycobacterial DNA-binding protein 1 (MDP1, namely Rv2986c, hupB or HU) is a major Mycobacterium tuberculosis protein that induces vaccine-efficacy by co-administration with CpG DNA. To produce MDP1 for booster-vaccine use, we have created recombinant MDP1 produced in both Escherichia coli (eMDP1) and Mycolicibacterium smegmatis (mMDP1), an avirulent rapid-growing mycobacteria. We tested their immunogenicity by checking interferon (IFN)-gamma production by stimulated peripheral blood cells derived from BCG-vaccinated individuals. Similar to native M. tuberculosis MDP1, we observed that most lysin resides in the C-terminal half of mMDP1 are highly methylated. In contrast, eMDP1 had less post-translational modifications and IFN-gamma stimulation. mMDP1 stimulated the highest amount of IFN-gamma production among the examined native M. tuberculosis proteins including immunodominant MPT32 and Antigen 85 complex. MDP1-mediated IFN-gamma production was more strongly enhanced when combined with a new type of CpG DNA G9.1 than any other tested CpG DNAs. Taken together, these results suggest that the combination of mMDP1 and G9.1 possess high potential use for human booster vaccine against tuberculosis.
Collapse
Affiliation(s)
- Yuriko Ozeki
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan.
| | - Akira Yokoyama
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Yutaka Yoshida
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Yukiko Ohara
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Tsukasa Mashima
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Chikako Tomiyama
- Graduate School of Health Sciences, Niigata University, 2-746, Asahimachi-Dori, Chuo-Ku, Niigata, 951-8518, Japan
| | - Amina K Shaban
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Atsuki Takeishi
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Mayuko Osada-Oka
- Food Hygiene and Environmental Health, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5, Shimogamo-Nakaragi-Cho, Sakyo-Ku, Kyoto, 606-8522, Japan
| | - Takehiro Yamaguchi
- Department of Bacteriology 1, National Institute of Infectious Disease, 1-23-1, Sinjuku-Ku, Tokyo, 162-8640, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Jun-Ichi Maeyama
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
- Reseach Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, 4-7-1, Musashimurayama, Tokyo, 208-0011, Japan
| | - Mariko Hakamata
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
- Department of Respiratory Medicine and Infectious Disease, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Hiroshi Moro
- Department of Respiratory Medicine and Infectious Disease, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Disease, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Daisuke Hayashi
- Central Laboratory, Japan BCG Laboratory, 3-1-5 Matsuyama, Kiyose, Tokyo, 204-0022, Japan
| | - Fumiko Suzuki
- Faculty of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Toshiko Yamamoto
- Central Laboratory, Japan BCG Laboratory, 3-1-5 Matsuyama, Kiyose, Tokyo, 204-0022, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashi-Murayama, Tokyo, 189-0002, Japan
| | - Sumiko Iho
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
- Faculty of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
- Louis Pasteur Center for Medical Research, 103-5 Tanaka Monzen-cho, Sakyo-ku, Kyoto, 606-8225, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Saburo Yamamoto
- Central Laboratory, Japan BCG Laboratory, 3-1-5 Matsuyama, Kiyose, Tokyo, 204-0022, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashi-Murayama, Tokyo, 189-0002, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan.
- Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C JI. Mulyorejo, Surabaya, 60113, Indonesia.
- Division of Research Aids, Hokkaido University Institute for Vaccine Research and Development, Kita 20, Nishi 10, Kita-Ku, Sapporo, 001-0020, Japan.
| |
Collapse
|