1
|
Miyata Y, Nishimura M, Nagata A, Jing X, Sultan CS, Kuribayashi R, Takahashi K, Lee Y, Nishizawa T, Segawa K. Membrane structure-responsive lipid scramblase activity of the TMEM63/OSCA family. FEBS Lett 2025; 599:656-666. [PMID: 39716028 DOI: 10.1002/1873-3468.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024]
Abstract
Phospholipids are asymmetrically distributed in the plasma membrane (PM), and scramblases disrupt this asymmetry by shuffling phospholipids. We recently identified mouse Tmem63b as a membrane structure-responsive scramblase. Tmem63b belongs to the TMEM63/OSCA family of ion channels; however, the conservation of the scramblase activity within this family remains unclear. We expressed human TMEM63 paralogs, TMEM63B orthologs, and plant OSCA1.1 in Tmem63b-deficient mouse pro-B cells and found that vertebrate TMEM63B orthologs exhibit scramblase activity at the PM. Previously, ten pathogenic human TMEM63B variants were identified, some of which exhibited constitutive scramblase activity. Upon expressing all variants, we found that nine variants displayed constitutive scramblase activity. These results suggest that membrane structure-responsive scramblase activity at the PM is conserved among vertebrate TMEM63B orthologs.
Collapse
Affiliation(s)
- Yugo Miyata
- Department of Medical Chemistry, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Japan
| | - Megumi Nishimura
- Department of Medical Chemistry, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Japan
| | - Aya Nagata
- Department of Medical Chemistry, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Japan
| | - Xu Jing
- Department of Medical Chemistry, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Japan
| | - Cheryl S Sultan
- Department of Medical Chemistry, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Japan
| | - Risa Kuribayashi
- Department of Medical Chemistry, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Japan
| | - Katsuya Takahashi
- Graduate School of Medical Life Science, Yokohama City University, Japan
| | - Yongchan Lee
- Graduate School of Medical Life Science, Yokohama City University, Japan
| | - Tomohiro Nishizawa
- Graduate School of Medical Life Science, Yokohama City University, Japan
| | - Katsumori Segawa
- Department of Medical Chemistry, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Japan
| |
Collapse
|
2
|
Chen GL, Li JY, Chen X, Liu JW, Zhang Q, Liu JY, Wen J, Wang N, Lei M, Wei JP, Yi L, Li JJ, Ling YP, Yi HQ, Hu Z, Duan J, Zhang J, Zeng B. Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion. J Clin Invest 2024; 134:e174508. [PMID: 38127458 PMCID: PMC10904053 DOI: 10.1172/jci174508] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
Pulmonary surfactant is a lipoprotein complex lining the alveolar surface to decrease the surface tension and facilitate inspiration. Surfactant deficiency is often seen in premature infants and in children and adults with respiratory distress syndrome. Mechanical stretch of alveolar type 2 epithelial (AT2) cells during lung expansion is the primary physiological factor that stimulates surfactant secretion; however, it is unclear whether there is a mechanosensor dedicated to this process. Here, we show that loss of the mechanosensitive channels TMEM63A and TMEM63B (TMEM63A/B) resulted in atelectasis and respiratory failure in mice due to a deficit of surfactant secretion. TMEM63A/B were predominantly localized at the limiting membrane of the lamellar body (LB), a lysosome-related organelle that stores pulmonary surfactant and ATP in AT2 cells. Activation of TMEM63A/B channels during cell stretch facilitated the release of surfactant and ATP from LBs fused with the plasma membrane. The released ATP evoked Ca2+ signaling in AT2 cells and potentiated exocytic fusion of more LBs. Our study uncovered a vital physiological function of TMEM63 mechanosensitive channels in preparing the lungs for the first breath at birth and maintaining respiration throughout life.
Collapse
Affiliation(s)
- Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jing-Yi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Xin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jia-Wei Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Qian Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jie-Yu Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jing Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jun-Peng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Li Yi
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jia-Jia Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Yu-Peng Ling
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - He-Qiang Yi
- Department of Cardiothoracic Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhenying Hu
- Human Aging Research Institute and School of Life Sciences and
| | - Jingjing Duan
- Human Aging Research Institute and School of Life Sciences and
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| |
Collapse
|
3
|
Grove JCR, Knight ZA. The neurobiology of thirst and salt appetite. Neuron 2024; 112:3999-4016. [PMID: 39610247 DOI: 10.1016/j.neuron.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
The first act of life was the capture of water within a cell membrane,1 and maintaining fluid homeostasis is critical for the survival of most organisms. In this review, we discuss the neural mechanisms that drive animals to seek out and consume water and salt. We discuss the cellular and molecular mechanisms for sensing imbalances in blood osmolality, volume, and sodium content; how this information is integrated in the brain to produce thirst and salt appetite; and how these motivational drives are rapidly quenched by the ingestion of water and salt. We also highlight some of the gaps in our current understanding of the fluid homeostasis system, including the molecular identity of the key sensors that detect many fluid imbalances, as well as the mechanisms that control drinking in the absence of physiologic deficit, such as during meals.
Collapse
Affiliation(s)
- James C R Grove
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
Ponce A, Ogazon del Toro A, Jimenez L, Roldan ML, Shoshani L. Osmotically Sensitive TREK Channels in Rat Articular Chondrocytes: Expression and Functional Role. Int J Mol Sci 2024; 25:7848. [PMID: 39063089 PMCID: PMC11277475 DOI: 10.3390/ijms25147848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Articular chondrocytes are the primary cells responsible for maintaining the integrity and functionality of articular cartilage, which is essential for smooth joint movement. A key aspect of their role involves mechanosensitive ion channels, which allow chondrocytes to detect and respond to mechanical forces encountered during joint activity; nonetheless, the variety of mechanosensitive ion channels involved in this process has not been fully resolved so far. Because some members of the two-pore domain potassium (K2P) channel family have been described as mechanosensors in other cell types, in this study, we investigate whether articular chondrocytes express such channels. RT-PCR analysis reveals the presence of TREK-1 and TREK-2 channels in these cells. Subsequent protein expression assessments, including Western blotting and immunohistochemistry, confirm the presence of TREK-1 in articular cartilage samples. Furthermore, whole-cell patch clamp assays demonstrate that freshly isolated chondrocytes exhibit currents attributable to TREK-1 channels, as evidenced by activation by arachidonic acid (AA) and ml335 and further inhibition by spadin. Additionally, exposure to hypo-osmolar shock activates currents, which can be attributed to the presence of TREK-1 channels, as indicated by their inhibition with spadin. Therefore, these findings highlight the expression of TREK channels in rat articular chondrocytes and suggest their potential involvement in regulating the integrity of cartilage extracellular matrix.
Collapse
Affiliation(s)
- Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Ciudad de México 07360, Mexico; (A.O.d.T.); (L.J.); (M.L.R.); (L.S.)
| | | | | | | | | |
Collapse
|
5
|
Murphy EA, Kleiner FH, Helliwell KE, Wheeler GL. Channels of Evolution: Unveiling Evolutionary Patterns in Diatom Ca 2+ Signalling. PLANTS (BASEL, SWITZERLAND) 2024; 13:1207. [PMID: 38732422 PMCID: PMC11085791 DOI: 10.3390/plants13091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
Diatoms are important primary producers in marine and freshwater environments, but little is known about the signalling mechanisms they use to detect changes in their environment. All eukaryotic organisms use Ca2+ signalling to perceive and respond to environmental stimuli, employing a range of Ca2+-permeable ion channels to facilitate the movement of Ca2+ across cellular membranes. We investigated the distribution of different families of Ca2+ channels in diatom genomes, with comparison to other members of the stramenopile lineage. The four-domain voltage-gated Ca2+ channels (Cav) are present in some centric diatoms but almost completely absent in pennate diatoms, whereas single-domain voltage-gated EukCatA channels were found in all diatoms. Glutamate receptors (GLRs) and pentameric ligand-gated ion channels (pLGICs) also appear to have been lost in several pennate species. Transient receptor potential (TRP) channels are present in all diatoms, but have not undergone the significant expansion seen in brown algae. All diatom species analysed lacked the mitochondrial uniporter (MCU), a highly conserved channel type found in many eukaryotes, including several stramenopile lineages. These results highlight the unique Ca2+-signalling toolkit of diatoms and indicate that evolutionary gains or losses of different Ca2+ channels may contribute to differences in cellular-signalling mechanisms between species.
Collapse
Affiliation(s)
- Eleanor A. Murphy
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Katherine E. Helliwell
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Glen L. Wheeler
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
| |
Collapse
|
6
|
Siori D, Vlachakis D, Makrythanasis P, Traeger-Synodinos J, Veltra D, Kampouraki A, Chrousos GP. A TMEM63A Nonsense Heterozygous Variant Linked to Infantile Transient Hypomyelinating Leukodystrophy Type 19? Genes (Basel) 2024; 15:525. [PMID: 38790154 PMCID: PMC11120763 DOI: 10.3390/genes15050525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Infantile onset transient hypomyelination (IOTH) is a rare form of leukodystrophy that is associated with transient motor impairment and delayed central nervous system myelination. Here, we report a case of a new mutation in the transmembrane protein 63A (TMEM63A) gene identified using Whole-Exome Sequencing (WES) in an 8.5-year-old boy with clinical symptoms similar to IOTH. The patient exhibited a mild developmental delay, including hypotonia and delayed motor milestones, as well as some notable phenotypic characteristics, such as macrocephaly and macrosomia. Despite the absence of early neuroimaging, genetic testing revealed a paternally inherited variant in TMEM63A (NM_14698.3:c.220A>T;p:(Arg74*)), potentially linked to infantile transient hypomyelinating leukodystrophy type 19. Our findings in this study and the patient's favorable clinical course underscore the potential for successful myelination even with delayed initiation and may contribute to a better understanding of the genotype-phenotype correlation in IOTH, emphasizing the importance of genetic analysis in unresolved developmental delay cases and providing critical insights for accurate diagnosis, prognosis and potential therapeutic strategies in rare leukodystrophies.
Collapse
Affiliation(s)
- Dimitra Siori
- University Research Institute of Maternal and Child Health and Precision Medicine, School of Medicine, National Kapodistrian University of Athens, 115 27 Athens, Greece; (D.S.); (D.V.)
- Clinical and Translational Research Endocrine Unit, School of Medicine, National Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Dimitrios Vlachakis
- University Research Institute of Maternal and Child Health and Precision Medicine, School of Medicine, National Kapodistrian University of Athens, 115 27 Athens, Greece; (D.S.); (D.V.)
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
- School of Informatics, Faculty of Natural & Mathematical Sciences, King’s College London, Bush House, Strand, London WC2R 2LS, UK
| | - Periklis Makrythanasis
- Laboratory of Medical Genetics, School of Medicine, National Kapodistrian University of Athens, 115 27 Athens, Greece
- Department of Genetic Medicine and Development, Medical School, University of Geneva, 1211 Geneva, Switzerland
- Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, School of Medicine, National Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Danai Veltra
- Laboratory of Medical Genetics, School of Medicine, National Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Afrodite Kampouraki
- Laboratory of Medical Genetics, School of Medicine, National Kapodistrian University of Athens, 115 27 Athens, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, School of Medicine, National Kapodistrian University of Athens, 115 27 Athens, Greece; (D.S.); (D.V.)
- Clinical and Translational Research Endocrine Unit, School of Medicine, National Kapodistrian University of Athens, 115 28 Athens, Greece
| |
Collapse
|