1
|
Liu H, Liu X, Tian F, Chen Y, Li J, Wang X, Qiu W, Wang X, Ma C, Ge W. PRMT3-Mediated H4R3me2a Promotes Primary Age-Related Tauopathy by Driving Tau Hyperphosphorylation in Neuron. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2506044. [PMID: 40344412 DOI: 10.1002/advs.202506044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Indexed: 05/11/2025]
Abstract
Primary age-related tauopathy (PART) and Alzheimer's disease (AD) both exhibit 3R/4R hyperphosphorylated tau-positive neurofibrillary tangles (NFTs) within the hippocampal-entorhinal system. Notably, PART patients show a higher degree of tau hyperphosphorylation in the entorhinal cortex (EC) than AD, yet the molecular mechanisms driving Aβ-independent tau hyperphosphorylation in PART remain poorly understood. Herein, through transcriptomic profiling of postmortem EC tissues and in vitro and in vivo functional validation, the present study identifies protein arginine methyltransferase 3 (PRMT3) as a critical driver of tau hyperphosphorylation. Mechanistically, PRMT3-mediated tau hyperphosphorylation is dependent on asymmetric dimethylation of histone H4 at arginine 3 (H4R3me2a), which upregulates miR-448. Elevated miR-448 specifically targets and suppresses IGF1R, leading to downstream GSK3β activation and subsequent tau hyperphosphorylation through PI3K/AKT/GSK3β signaling. Treatment with SGC707, a selective PRMT3 inhibitor, effectively reduces tau hyperphosphorylation and demonstrates therapeutic promise for PART and potentially other tauopathies. Collectively, this study defines the PRMT3/H4R3me2a/miR-448 axis as a critical regulatory pathway in tau hyperphosphorylation within PART, underscoring the potential of PRMT3 inhibition as a targeted therapeutic strategy for tauopathies.
Collapse
Affiliation(s)
- Haotian Liu
- Department of Immunology, State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xinnan Liu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Fengyuan Tian
- Department of Immunology, State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yashuang Chen
- Department of Immunology, State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jingying Li
- Department of Immunology, State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xue Wang
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Wenying Qiu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xia Wang
- Department of Immunology, State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Wei Ge
- Department of Immunology, State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
2
|
Su L, Bu J, Yu J, Jin M, Meng G, Zhu X. Comprehensive review and updated analysis of DNA methylation in hepatocellular carcinoma: From basic research to clinical application. Clin Transl Med 2024; 14:e70066. [PMID: 39462685 PMCID: PMC11513202 DOI: 10.1002/ctm2.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary malignant tumour, ranking second in global mortality rates and posing significant health threats. Epigenetic alterations, particularly DNA methylation, have emerged as pivotal factors associated with HCC diagnosis, therapy, prognosis and malignant progression. However, a comprehensive analysis of the DNA methylation mechanism driving HCC progression and its potential as a therapeutic biomarker remains lacking. This review attempts to comprehensively summarise various aspects of DNA methylation, such as its mechanism, detection methods and biomarkers aiding in HCC diagnosis, treatment and prognostic assessment of HCC. It also explores the role of DNA methylation in regulating HCC's malignant progression and sorafenib resistance, alongside elaborating the therapeutic effects of DNA methyltransferase inhibitors on HCC. A detailed examination of these aspects underscores the significant research on DNA methylation in tumour cells to elucidate malignant progression mechanisms, identify diagnostic markers and develop new tumour-specific inhibitors for HCC. KEY POINTS: A comprehensive summary of various aspects of DNA methylation, such as its mechanism, detection methods and biomarkers aiding in diagnosis and treatment. The role of DNA methylation in regulating hepatocellular carcinoma's (HCC) malignant progression and sorafenib resistance, alongside elaborating therapeutic effects of DNA methyltransferase inhibitors. Deep research on DNA methylation is critical for discovering novel tumour-specific inhibitors for HCC.
Collapse
Affiliation(s)
- Lin Su
- Department of Pain ManagementShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiawen Bu
- Department of Colorectal SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiahui Yu
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Mila Jin
- Department of Operation RoomThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Guanliang Meng
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xudong Zhu
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Department of General SurgeryCancer Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
3
|
Raj A, Petreaca RC, Mirzaei G. Multi-Omics Integration for Liver Cancer Using Regression Analysis. Curr Issues Mol Biol 2024; 46:3551-3562. [PMID: 38666952 PMCID: PMC11049490 DOI: 10.3390/cimb46040222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Genetic biomarkers have played a pivotal role in the classification, prognostication, and guidance of clinical cancer therapies. Large-scale and multi-dimensional analyses of entire cancer genomes, as exemplified by projects like The Cancer Genome Atlas (TCGA), have yielded an extensive repository of data that holds the potential to unveil the underlying biology of these malignancies. Mutations stand out as the principal catalysts of cellular transformation. Nonetheless, other global genomic processes, such as alterations in gene expression and chromosomal re-arrangements, also play crucial roles in conferring cellular immortality. The incorporation of multi-omics data specific to cancer has demonstrated the capacity to enhance our comprehension of the molecular mechanisms underpinning carcinogenesis. This report elucidates how the integration of comprehensive data on methylation, gene expression, and copy number variations can effectively facilitate the unsupervised clustering of cancer samples. We have identified regressors that can effectively classify tumor and normal samples with an optimal integration of RNA sequencing, DNA methylation, and copy number variation while also achieving significant p-values. Further, these regressors were trained using linear and logistic regression with k-means clustering. For comparison, we employed autoencoder- and stacking-based omics integration and computed silhouette scores to evaluate the clusters. The proof of concept is illustrated using liver cancer data. Our analysis serves to underscore the feasibility of unsupervised cancer classification by considering genetic markers beyond mutations, thereby emphasizing the clinical relevance of additional global cellular parameters that contribute to the transformative process in cells. This work is clinically relevant because changes in gene expression and genomic re-arrangements have been shown to be signatures of cellular transformation across cancers, as well as in liver cancers.
Collapse
Affiliation(s)
- Aditya Raj
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Ruben C. Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA;
- Cancer Biology Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Golrokh Mirzaei
- Department of Computer Science and Engineering, The Ohio State University, Marion, OH 43302, USA
| |
Collapse
|