1
|
Asih PBS, Siregar JE, Dewayanti FK, Pravitasari NE, Rozi IE, Rizki AFM, Risandi R, Couper KN, Oceandy D, Syafruddin D. Treatment with specific and pan-plasma membrane calcium ATPase (PMCA) inhibitors reduces malaria parasite growth in vitro and in vivo. Malar J 2022; 21:206. [PMID: 35768835 PMCID: PMC9241181 DOI: 10.1186/s12936-022-04228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022] Open
Abstract
Background Rapid emergence of Plasmodium resistance to anti-malarial drug mainstays has driven a continual effort to discover novel drugs that target different biochemical pathway (s) during infection. Plasma membrane Calcium + 2 ATPase (PMCA4), a novel plasma membrane protein that regulates Calcium levels in various cells, namely red blood cell (RBC), endothelial cell and platelets, represents a new biochemical pathway that may interfere with susceptibility to malaria and/or severe malaria. Methods This study identified several pharmacological inhibitors of PMCA4, namely ATA and Resveratrol, and tested for their anti-malarial activities in vitro and in vivo using the Plasmodium falciparum 3D7 strain, the Plasmodium berghei ANKA strain, and Plasmodium yoelii 17XL strain as model. Results In vitro propagation of P. falciparum 3D7 strain in the presence of a wide concentration range of the inhibitors revealed that the parasite growth was inhibited in a dose-dependent manner, with IC50s at 634 and 0.231 µM, respectively. Results The results confirmed that both compounds exhibit moderate to potent anti-malarial activities with the strongest parasite growth inhibition shown by resveratrol at 0.231 µM. In vivo models using P. berghei ANKA for experimental cerebral malaria and P. yoelii 17XL for the effect on parasite growth, showed that the highest dose of ATA, 30 mg/kg BW, increased survival of the mice. Likewise, resveratrol inhibited the parasite growth following 4 days intraperitoneal injection at the dose of 100 mg/kg BW. Conclusion The findings indicate that the PMCA4 of the human host may be a potential target for novel anti-malarials, either as single drug or in combination with the currently available effective anti-malarials.
Collapse
Affiliation(s)
- Puji B S Asih
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Josephine E Siregar
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Farahana K Dewayanti
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Normalita E Pravitasari
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Ismail E Rozi
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Andita F M Rizki
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Rifqi Risandi
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Kevin N Couper
- Division of Infection, Immunity & Respiratory Medicine, The University of Manchester, Manchester, UK
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | - Din Syafruddin
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia. .,Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
| |
Collapse
|
2
|
Resveratrol Treatment in Human Parkin-Mutant Fibroblasts Modulates cAMP and Calcium Homeostasis Regulating the Expression of Mitochondria-Associated Membranes Resident Proteins. Biomolecules 2021; 11:biom11101511. [PMID: 34680144 PMCID: PMC8534032 DOI: 10.3390/biom11101511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Parkin plays an important role in ensuring efficient mitochondrial function and calcium homeostasis. Parkin-mutant human fibroblasts, with defective oxidative phosphorylation activity, showed high basal cAMP level likely ascribed to increased activity/expression of soluble adenylyl cyclase and/or low expression/activity of the phosphodiesterase isoform 4 and to a higher Ca2+ level. Overall, these findings support the existence, in parkin-mutant fibroblasts, of an abnormal Ca2+ and cAMP homeostasis in mitochondria. In our previous studies resveratrol treatment of parkin-mutant fibroblasts induced a partial rescue of mitochondrial functions associated with stimulation of the AMPK/SIRT1/PGC-1α pathway. In this study we provide additional evidence of the potential beneficial effects of resveratrol inducing an increase in the pre-existing high Ca2+ level and remodulation of the cAMP homeostasis in parkin-mutant fibroblasts. Consistently, we report in these fibroblasts higher expression of proteins implicated in the tethering of ER and mitochondrial contact sites along with their renormalization after resveratrol treatment. On this basis we hypothesize that resveratrol-mediated enhancement of the Ca2+ level, fine-tuned by the ER-mitochondria Ca2+ crosstalk, might modulate the pAMPK/AMPK pathway in parkin-mutant fibroblasts.
Collapse
|
3
|
Themistocleous SC, Yiallouris A, Tsioutis C, Zaravinos A, Johnson EO, Patrikios I. Clinical significance of P-class pumps in cancer. Oncol Lett 2021; 22:658. [PMID: 34386080 PMCID: PMC8298992 DOI: 10.3892/ol.2021.12919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
P-class pumps are specific ion transporters involved in maintaining intracellular/extracellular ion homeostasis, gene transcription, and cell proliferation and migration in all eukaryotic cells. The present review aimed to evaluate the role of P-type pumps [Na+/K+ ATPase (NKA), H+/K+ ATPase (HKA) and Ca2+-ATPase] in cancer cells across three fronts, namely structure, function and genetic expression. It has been shown that administration of specific P-class pumps inhibitors can have different effects by: i) Altering pump function; ii) inhibiting cell proliferation; iii) inducing apoptosis; iv) modifying metabolic pathways; and v) induce sensitivity to chemotherapy and lead to antitumor effects. For example, the NKA β2 subunit can be downregulated by gemcitabine, resulting in increased apoptosis of cancer cells. The sarcoendoplasmic reticulum calcium ATPase can be inhibited by thapsigargin resulting in decreased prostate tumor volume, whereas the HKA α subunit can be affected by proton pump inhibitors in gastric cancer cell lines, inducing apoptosis. In conclusion, the present review highlighted the central role of P-class pumps and their possible use and role as anticancer cellular targets for novel therapeutic chemical agents.
Collapse
Affiliation(s)
| | - Andreas Yiallouris
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| | - Constantinos Tsioutis
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
- College of Medicine, Member of Qatar University Health, Qatar University, 2713 Doha, Qatar
| | - Elizabeth O. Johnson
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| | - Ioannis Patrikios
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
4
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
5
|
Guo J, Pereira TJ, Mori Y, Gonzalez Medina M, Breen DM, Dalvi PS, Zhang H, McCole DF, McBurney MW, Heximer SP, Tsiani EL, Dolinsky VW, Giacca A. Resveratrol Inhibits Neointimal Growth after Arterial Injury in High-Fat-Fed Rodents: The Roles of SIRT1 and AMPK. J Vasc Res 2020; 57:325-340. [PMID: 32777783 DOI: 10.1159/000509217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
We have shown that both insulin and resveratrol (RSV) decrease neointimal hyperplasia in chow-fed rodents via mechanisms that are in part overlapping and involve the activation of endothelial nitric oxide synthase (eNOS). However, this vasculoprotective effect of insulin is abolished in high-fat-fed insulin-resistant rats. Since RSV, in addition to increasing insulin sensitivity, can activate eNOS via pathways that are independent of insulin signaling, such as the activation of sirtuin 1 (SIRT1) and AMP-activated kinase (AMPK), we speculated that unlike insulin, the vasculoprotective effect of RSV would be retained in high-fat-fed rats. We found that high-fat feeding decreased insulin sensitivity and increased neointimal area and that RSV improved insulin sensitivity (p < 0.05) and decreased neointimal area in high-fat-fed rats (p < 0.05). We investigated the role of SIRT1 in the effect of RSV using two genetic mouse models. We found that RSV decreased neointimal area in high-fat-fed wild-type mice (p < 0.05), an effect that was retained in mice with catalytically inactive SIRT1 (p < 0.05) and in heterozygous SIRT1-null mice. In contrast, the effect of RSV was abolished in AMKPα2-null mice. Thus, RSV decreased neointimal hyperplasia after arterial injury in both high-fat-fed rats and mice, an effect likely not mediated by SIRT1 but by AMPKα2.
Collapse
Affiliation(s)
- June Guo
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Troy J Pereira
- Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yusaku Mori
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | | | - Danna M Breen
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Prasad S Dalvi
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Biology Department, Morosky College of Health Professions and Sciences, Gannon University, Erie, Pennsylvania, USA
| | - Hangjun Zhang
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Michael W McBurney
- Program in Cancer Therapeutics, Ottawa Hospital Research Institute, Departments of Medicine and Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Scott P Heximer
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Evangelia L Tsiani
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Vernon W Dolinsky
- Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Adria Giacca
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, .,Department of Medicine, University of Toronto, Toronto, Ontario, Canada, .,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada, .,Banting and Best Diabetes Centre, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada,
| |
Collapse
|
6
|
Peterson JA, Crowther CM, Andrus MB, Kenealey JD. Resveratrol derivatives increase cytosolic calcium by inhibiting plasma membrane ATPase and inducing calcium release from the endoplasmic reticulum in prostate cancer cells. Biochem Biophys Rep 2019; 19:100667. [PMID: 31463373 PMCID: PMC6709415 DOI: 10.1016/j.bbrep.2019.100667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022] Open
Abstract
Resveratrol (RES) is a putative chemotherapeutic naturally found in grapes, peanuts, and Japanese knotweed. Previous studies demonstrate that RES modulates calcium signaling as part of its chemotherapeutic activity. In this study, we determined the chemotherapeutic activity of three RES esters that have been modified at the 4' hydroxyl by the addition of pivalate, butyrate, and isobutyrate. All of the RES derivatives disrupted the calcium signaling in prostate cancer cells more than the parent compound, RES. Further, we demonstrate that the RES derivatives may disrupt the calcium homeostasis by activating calcium release from the endoplasmic reticulum and inhibiting plasma membrane Ca2+-ATPase. The pivalated and butyrated RES derivatives decreased cell viability significantly more than RES. Because pivalated and butyrated RES are more effective than RES at targeting calcium signaling pathways, pivalated and butyrated RES may serve as more effective chemotherapeutics.
Collapse
Key Words
- 2-APB, 2-Aminoethyl diphenylborinate
- AUC, area under the curve
- BuRV, 4′-butyrate resveratrol
- Calcium signaling
- DMEM, Dulbecco's modified Eagle medium
- DMSO, dimethyl sulfoxide
- ER, endoplasmic reticulum
- FBS, fetal bovine serum
- Fura-2
- Fura-2, Fura-2-Acetoxymethyl ester
- HBSS, Ca2+- and Mg2+-free Hank's Balanced Salt Solution
- IP3, inositol triphosphate
- IP3R, inositol triphosphate receptor
- IsoRV, 4′-isobutyrate resveratrol
- MTT, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- PBS, phosphate-buffered saline
- PIP2, phosphatidylinositol biphosphate
- PIV, 4′-pivalate resveratrol
- PLC, phospholipase C
- PMCA, plasma membrane Ca2+-ATPase
- Plasma membrane Ca2+-ATPase
- Prostate cancer
- RES, resveratrol
- Resveratrol
- SERCA, sarcoendoplasmic reticular Ca2+-ATPase
- TG, thapsigargin
- [Ca2+]i, cytosolic calcium concentration
Collapse
Affiliation(s)
- Joshua A. Peterson
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT, USA
| | - Colton M. Crowther
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Merritt B. Andrus
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Jason D. Kenealey
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT, USA
| |
Collapse
|
7
|
Hoppe S, Breves G, Klinger S. Calcium-induced chloride secretion is decreased by Resveratrol in ileal porcine tissue. BMC Res Notes 2018; 11:719. [PMID: 30309374 PMCID: PMC6182809 DOI: 10.1186/s13104-018-3825-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/08/2018] [Indexed: 11/16/2022] Open
Abstract
Objective Chloride (Cl−) secretion is crucial for intestinal fluid secretion. Therefore, effects of the polyphenol Resveratrol (RSV) on Cl− secretion have been investigated. In a previous study, we observed effects of RSV on forskolin-induced Cl− secretion in the porcine jejunum but not the ileum although RSV itself induced a transepithelial ion current that may represent Cl− secretion in the ileum. The aim of this study was to gain further insights regarding the effects of RSV on characteristics of Cl− secretion in the porcine ileum using the Ussing chamber technique (recording of short circuit currents (Isc) as a measure for epithelial net ion transfer). Results RSV increased the Isc in the porcine ileum but not in the porcine jejunum as is already known. This increase was absent in a Cl−-free buffer system, indicating that RSV indeed induces Cl− secretion. However, the carbachol-induced Isc was significantly inhibited by RSV indicating an inhibition of Ca2+-induced Cl− secretion. The cellular basis for these contradictory, segment specific results of RSV on Cl− secretion has to be subjected to further studies. The results also underline, that is difficult to generalize effects of RSV between different intestinal locations, organs, cell culture models or species. Electronic supplementary material The online version of this article (10.1186/s13104-018-3825-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne Hoppe
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Stefanie Klinger
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany.
| |
Collapse
|
8
|
Peterson JA, Doughty HP, Eells AJ, Johnson TA, Hastings JP, Crowther CM, Andrus MB, Kenealey JD. The Effects of 4'-Esterified Resveratrol Derivatives on Calcium Dynamics in Breast Cancer Cells. Molecules 2017; 22:E1968. [PMID: 29135943 PMCID: PMC6150182 DOI: 10.3390/molecules22111968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer is a highly aggressive subtype of breast cancer. Frequently, breast cancer cells modulate their calcium signaling pathways to optimize growth. Unique calcium pathways in breast cancer cells could serve as a way to target tumorigenic cells without affecting normal tissue. Resveratrol has previously been shown to activate calcium signaling pathways. We use cell viability, single-cell calcium microscopy, and RT-PCR assays to determine the activity and mechanism of three different 4'-esterified resveratrol derivatives. We demonstrate that two of the derivatives reduce cell viability more effectively than resveratrol in MDA-MB-231 human breast cancer cells. The derivatives also activate similar pro-apoptotic calcium signaling pathways. In particular, the pivalated and butyrated resveratrol derivatives are intriguing putative chemotherapeutics because they are more effective at decreasing cell viability in vitro and inhibiting the plasma membrane Ca2+-ATPase, a protein that is often modulated in breast cancer.
Collapse
Affiliation(s)
- Joshua A Peterson
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA.
| | - Hayden P Doughty
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA.
| | - Austin J Eells
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA.
| | - Trent A Johnson
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA.
| | - Jordan P Hastings
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA.
| | - Colton M Crowther
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| | - Merritt B Andrus
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| | - Jason D Kenealey
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|