1
|
Kanno Y, Shu E. α2-Antiplasmin as a Potential Therapeutic Target for Systemic Sclerosis. Life (Basel) 2022; 12:life12030396. [PMID: 35330147 PMCID: PMC8953682 DOI: 10.3390/life12030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Systemic sclerosis is a connective tissue disease of unknown origin that is characterized by immune system abnormalities, vascular damage, and extensive fibrosis of the skin and visceral organs. α2-antiplasmin is known to be the main plasmin inhibitor and has various functions such as cell differentiation and cytokine production, as well as the regulation of the maintenance of the immune system, endothelial homeostasis, and extracellular matrix metabolism. The expression of α2-antiplasmin is elevated in dermal fibroblasts from systemic sclerosis patients, and the blockade of α2-antiplasmin suppresses fibrosis progression and vascular dysfunction in systemic sclerosis model mice. α2-antiplasmin may have promise as a potential therapeutic target for systemic sclerosis. This review considers the role of α2-antiplasmin in the progression of systemic sclerosis.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, 97-1 Kodo Kyotanabe, Kyoto 610-0395, Japan
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
- Correspondence: ; Tel.:+81-0774-65-8629
| | - En Shu
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
| |
Collapse
|
2
|
Kanno Y, Hirota M, Matsuo O, Ozaki KI. α2-antiplasmin positively regulates endothelial-to-mesenchymal transition and fibrosis progression in diabetic nephropathy. Mol Biol Rep 2021; 49:205-215. [PMID: 34709571 DOI: 10.1007/s11033-021-06859-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN), is microvascular complication of diabetes causes to kidney dysfunction and renal fibrosis. It is known that hyperglycemia and advanced glycation end products (AGEs) produced by hyperglycemic condition induce myofibroblast differentiation and endothelial-to-mesenchymal transition (EndoMT), and exacerbate fibrosis in DN. Recently, we demonstrated that α2-antiplasmin (α2AP) is associated with inflammatory response and fibrosis progression. METHODS We investigated the role of α2AP on fibrosis progression in DN using a streptozotocin-induced DN mouse model. RESULTS α2AP deficiency attenuated EndoMT and fibrosis progression in DN model mice. We also showed that the high glucose condition/AGEs induced α2AP production in fibroblasts (FBs), and the reduction of receptor for AGEs (RAGE) by siRNA attenuated the AGEs-induced α2AP production in FBs. Furthermore, the bloackade of α2AP by the neutralizing antibody attenuated the high glucose condition-induced pro-fibrotic changes in FBs. On the other hand, the hyperglycemic condition/AGEs induced EndoMT in vascular endothelial cells (ECs), the FBs/ECs co-culture promoted the high glucose condition-induced EndoMT compared to ECs mono-culture. Furthermore, α2AP promoted the AGEs-induced EndoMT, and the blockade of α2AP attenuated the FBs/ECs co-culture-promoted EndoMT under the high glucose condition. CONCLUSIONS The high glucose conditions induced α2AP production, and α2AP is associated with EndoMT and fibrosis progression in DN. These findings provide a basis for clinical strategies to improve DN.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan.
| | - Momoko Hirota
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan
| | - Osamu Matsuo
- Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Japan
| | - Kei-Ichi Ozaki
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan
| |
Collapse
|
3
|
Izem L, Bialkowska K, Pluskota E, Das M, Das R, Nieman MT, Plow EF. Plasminogen-induced foam cell formation by macrophages occurs through a histone 2B (H2B)-PAR1 pathway and requires integrity of clathrin-coated pits. J Thromb Haemost 2021; 19:941-953. [PMID: 33492784 DOI: 10.1111/jth.15253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Plasminogen/plasmin is a serine protease system primarily responsible for degrading fibrin within blood clots. Plasminogen mediates its functions by interacting with plasminogen receptors on the cell surface. H2B, one such plasminogen receptor, is found on the surface of several cell types including macrophages. Both basic and clinical studies support the role of plasminogen in the process of foam cell formation (FCF), a hallmark of atherosclerosis. Growing evidence also implicates serine protease-activated receptors (PARs) in atherosclerosis. These receptors are also found on macrophages, and plasmin is capable of activating PAR1 and PAR4. The goal of this study was to determine the extent of H2B's contribution to plasminogen-mediated FCF by macrophages and if PARs are involved in this process. APPROACH AND RESULTS Treating macrophages with plasminogen increases their oxidized low-density lipoprotein uptake and plasminogen-mediated foam cell formation (Plg-FCF) significantly. The magnitude of Plg-FCF correlates with cell-surface expression of the H2B level. H2B blockade or downregulation reduces Plg-FCF, whereas its overexpression or high endogenous levels increases Plg-FCF. Modulating PAR1 level in mouse macrophages affects Plg-FCF. Activation/overexpression of PAR1 increases and its blockade/knockdown reduces this response. Confocal imaging indicates that both H2B and PAR1 colocalize with clathrin coated pits on the surface of macrophages, and reducing expression of clathrin or interfering with the clathrin-coated pits integrity reduces Plg-FCF. CONCLUSION Our data indicate that the magnitude of Plg-FCF by macrophages is proportional to the H2B levels and demonstrate for the first time that PAR1 is involved in this process and that the integrity of clathrin-coated pits is required for the full effect of Plg-induced FCF.
Collapse
Affiliation(s)
- Lahoucine Izem
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio, USA
| | - Katarzyna Bialkowska
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio, USA
| | - Elzbieta Pluskota
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio, USA
| | - Mitali Das
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio, USA
| | - Riku Das
- Roberts J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Edward F Plow
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Waasdorp M, Florquin S, Duitman J, Spek CA. Pharmacological PAR-1 inhibition reduces blood glucose levels but does not improve kidney function in experimental type 2 diabetic nephropathy. FASEB J 2019; 33:10966-10972. [PMID: 31287960 DOI: 10.1096/fj.201900516r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vorapaxar-dependent protease-activated receptor (PAR)-1 inhibition diminishes diabetic nephropathy in experimental type 1 diabetes. As most patients with diabetic nephropathy suffer from type 2 diabetes, the aim of this study was to investigate whether PAR-1 inhibition also limits diabetic nephropathy in experimental type 2 diabetes. Consequently, leptin-deficient black and tan brachyuric (BTBRob/ob) mice were randomly assigned to vorapaxar (1.75 mg/kg; twice weekly via oral gavage) or vehicle treatment, whereas matched wild-type (WT) BTBR (BTBRWT) mice served as nondiabetic controls. Weight and (nonfasting) blood glucose levels were monitored for up to 18 wk, after which kidney function and histologic damage was evaluated postmortem. We show that blood glucose levels and body weight increased in diabetic BTBRob/ob mice compared with nondiabetic BTBRWT controls. Vorapaxar-dependent PAR-1 inhibition reduced but did not normalize blood glucose levels in BTBRob/ob mice, whereas it potentiated the increase in body weight. Vorapaxar did not, however, preserve kidney function, whereas it only minimally reduced histopathological signs of kidney injury. Overall, we thus show that PAR-1 inhibition reduces blood glucose levels during the progression of diabetic nephropathy in experimental type 2 diabetes but does not improve renal function. This is in contrast to the therapeutic potential of vorapaxar in type 1 diabetes-induced nephropathy, highlighting the importance of disease-dependent treatment modalities.-Waasdorp, M., Florquin, S., Duitman, J., Spek, C. A. Pharmacological PAR-1 inhibition reduces blood glucose levels but does not improve kidney function in experimental type 2 diabetic nephropathy.
Collapse
Affiliation(s)
- Maaike Waasdorp
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands.,Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; and
| | - Sandrine Florquin
- Department of Pathology, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - JanWillem Duitman
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Waasdorp M, de Rooij DM, Florquin S, Duitman J, Spek CA. Protease-activated receptor-1 contributes to renal injury and interstitial fibrosis during chronic obstructive nephropathy. J Cell Mol Med 2018; 23:1268-1279. [PMID: 30485646 PMCID: PMC6349177 DOI: 10.1111/jcmm.14028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/05/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
End‐stage renal disease, the final stage of all chronic kidney disorders, is associated with renal fibrosis and inevitably leads to renal failure and death. Transition of tubular epithelial cells (TECs) into mesenchymal fibroblasts constitutes a proposed mechanism underlying the progression of renal fibrosis and here we assessed whether protease‐activated receptor (PAR)‐1, which recently emerged as an inducer of epithelial‐to‐mesenchymal transition (EMT), aggravates renal fibrosis. We show that PAR‐1 activation on TECs reduces the expression of epithelial markers and simultaneously induces mesenchymal marker expression reminiscent of EMT. We next show that kidney damage was reduced in PAR‐1‐deficient mice during unilateral ureter obstruction (UUO) and that PAR‐1‐deficient mice develop a diminished fibrotic response. Importantly, however, we did hardly observe any signs of mesenchymal transition in both wild‐type and PAR‐1‐deficient mice suggesting that diminished fibrosis in PAR‐1‐deficient mice is not due to reduced EMT. Instead, the accumulation of macrophages and fibroblasts was significantly reduced in PAR‐1‐deficient animals which were accompanied by diminished production of MCP‐1 and TGF‐β. Overall, we thus show that PAR‐1 drives EMT of TECs in vitro and aggravates UUO‐induced renal fibrosis although this is likely due to PAR‐1‐dependent pro‐fibrotic cytokine production rather than EMT.
Collapse
Affiliation(s)
- Maaike Waasdorp
- Center for Experimental and Molecular Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Dennis M de Rooij
- Center for Experimental and Molecular Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Pathology, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - JanWillem Duitman
- Center for Experimental and Molecular Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands.,Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Physiopathologie Et Epidémiologie Des Maladies Respiratoires, Medical School Xavier Bichat, Inserm UMR1152, Paris, France
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|