1
|
Galluccio M, Console L, Pochini L, Scalise M, Giangregorio N, Indiveri C. Strategies for Successful Over-Expression of Human Membrane Transport Systems Using Bacterial Hosts: Future Perspectives. Int J Mol Sci 2022; 23:ijms23073823. [PMID: 35409183 PMCID: PMC8998559 DOI: 10.3390/ijms23073823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Ten percent of human genes encode for membrane transport systems, which are key components in maintaining cell homeostasis. They are involved in the transport of nutrients, catabolites, vitamins, and ions, allowing the absorption and distribution of these compounds to the various body regions. In addition, roughly 60% of FDA-approved drugs interact with membrane proteins, among which are transporters, often responsible for pharmacokinetics and side effects. Defects of membrane transport systems can cause diseases; however, knowledge of the structure/function relationships of transporters is still limited. Among the expression of hosts that produce human membrane transport systems, E. coli is one of the most favorable for its low cultivation costs, fast growth, handiness, and extensive knowledge of its genetics and molecular mechanisms. However, the expression in E. coli of human membrane proteins is often toxic due to the hydrophobicity of these proteins and the diversity in structure with respect to their bacterial counterparts. Moreover, differences in codon usage between humans and bacteria hamper translation. This review summarizes the many strategies exploited to achieve the expression of human transport systems in bacteria, providing a guide to help people who want to deal with this topic.
Collapse
Affiliation(s)
- Michele Galluccio
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
| | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
| | - Lorena Pochini
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
| | - Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
| | - Nicola Giangregorio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy;
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy;
- Correspondence:
| |
Collapse
|
2
|
Bruni R, Laguerre A, Kaminska A, McSweeney S, Hendrickson WA, Liu Q. High-throughput cell-free screening of eukaryotic membrane protein expression in lipidic mimetics. Protein Sci 2022; 31:639-651. [PMID: 34910339 PMCID: PMC8862427 DOI: 10.1002/pro.4259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022]
Abstract
Membrane proteins play essential roles in cellular function and metabolism. Nonetheless, biophysical and structural studies of membrane proteins are impeded by the difficulty of their expression in and purification from heterologous cell-based systems. As an alternative to these cell-based systems, cell-free protein synthesis has proven to be an exquisite method for screening membrane protein targets in a variety of lipidic mimetics. Here we report a high-throughput screening workflow and apply it to screen 61 eukaryotic membrane protein targets. For each target, we tested its expression in lipidic mimetics: two detergents, two liposomes, and two nanodiscs. We show that 35 membrane proteins (57%) can be expressed in a soluble fraction in at least one of the mimetics with the two detergents performing significantly better than nanodiscs and liposomes, in that order. Using the established cell-free workflow, we studied the production and biophysical assays for mitochondrial pyruvate carrier (MPC) complexes. Our studies show that the complexes produced in cell-free are functionally competent in complex formation and substrate binding. Our results highlight the utility of using cell-free systems for screening and production of eukaryotic membrane proteins.
Collapse
Affiliation(s)
- Renato Bruni
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA
| | - Aisha Laguerre
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA,Present address:
Roche DiagnosticsSanta ClaraCaliforniaUSA
| | - Anna‐Maria Kaminska
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA,Present address:
New York Blood CenterNew YorkNew YorkUSA
| | | | - Wayne A. Hendrickson
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA,Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
| | - Qun Liu
- NSLS‐II, Brookhaven National LaboratoryUptonNew YorkUSA,Biology DepartmentBrookhaven National LaboratoryUptonNew YorkUSA
| |
Collapse
|
3
|
Uncoupling Proteins and Regulated Proton Leak in Mitochondria. Int J Mol Sci 2022; 23:ijms23031528. [PMID: 35163451 PMCID: PMC8835771 DOI: 10.3390/ijms23031528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Higher concentration of protons in the mitochondrial intermembrane space compared to the matrix results in an electrochemical potential causing the back flux of protons to the matrix. This proton transport can take place through ATP synthase complex (leading to formation of ATP) or can occur via proton transporters of the mitochondrial carrier superfamily and/or membrane lipids. Some mitochondrial proton transporters, such as uncoupling proteins (UCPs), transport protons as their general regulating function; while others are symporters or antiporters, which use the proton gradient as a driving force to co-transport other substrates across the mitochondrial inner membrane (such as phosphate carrier, a symporter; or aspartate/glutamate transporter, an antiporter). Passage (or leakage) of protons across the inner membrane to matrix from any route other than ATP synthase negatively impacts ATP synthesis. The focus of this review is on regulated proton transport by UCPs. Recent findings on the structure and function of UCPs, and the related research methodologies, are also critically reviewed. Due to structural similarity of members of the mitochondrial carrier superfamily, several of the known structural features are potentially expandable to all members. Overall, this report provides a brief, yet comprehensive, overview of the current knowledge in the field.
Collapse
|