1
|
Troutman AD, Srinivasan S, Metzger CE, Fallen PB, Chen N, O’Neill KD, Allen MR, Biruete A, Moe SM, Avin KG. Musculoskeletal Health Worsened from Carnitine Supplementation and Not Impacted by a Novel Individualized Treadmill Training Protocol. Am J Nephrol 2024; 55:369-379. [PMID: 38377965 PMCID: PMC11147712 DOI: 10.1159/000537827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Chronic kidney disease (CKD) negatively affects musculoskeletal health, leading to reduced mobility, and quality of life. In healthy populations, carnitine supplementation and aerobic exercise have been reported to improve musculoskeletal health. However, there are inconclusive results regarding their effectiveness and safety in CKD. We hypothesized that carnitine supplementation and individualized treadmill exercise would improve musculoskeletal health in CKD. METHODS We used a spontaneously progressive CKD rat model (Cy/+ rat) (n = 11-12/gr): (1) Cy/+ (CKD-Ctrl), (2) CKD-carnitine (CKD-Carn), and (3) CKD-treadmill (CKD-TM). Carnitine (250 mg/kg) was injected daily for 10 weeks. Rats in the treadmill group ran 4 days/week on a 5° incline for 10 weeks progressing from 30 min/day for week one to 40 min/day for week two to 50 min/day for the remaining 8 weeks. At 32 weeks of age, we assessed overall cardiopulmonary fitness, muscle function, bone histology and architecture, and kidney function. Data were analyzed by one-way ANOVA with Tukey's multiple comparisons tests. RESULTS Moderate to severe CKD was confirmed by biochemistries for blood urea nitrogen (mean 43 ± 5 mg/dL CKD-Ctrl), phosphorus (mean 8 ± 1 mg/dL CKD-Ctrl), parathyroid hormone (PTH; mean 625 ± 185 pg/mL CKD-Ctrl), and serum creatinine (mean 1.1 ± 0.2 mg/mL CKD-Ctrl). Carnitine worsened phosphorous (mean 11 ± 3 mg/dL CKD-Carn; p < 0.0001), PTH (mean 1,738 ± 1,233 pg/mL CKD-Carn; p < 0.0001), creatinine (mean 1 ± 0.3 mg/dL CKD-Carn; p < 0.0001), cortical bone thickness (mean 0.5 ± 0.1 mm CKD-Ctrl, 0.4 ± 0.1 mm CKD-Carn; p < 0.05). Treadmill running significantly improves maximal aerobic capacity when compared to CKD-Ctrl (mean 14 ± 2 min CKD-TM, 10 ± 2 min CKD-Ctrl; p < 0.01). CONCLUSION Carnitine supplementation worsened CKD progression, mineral metabolism biochemistries, and cortical porosity and did not have an impact on physical function. Individualized treadmill running improved maximal aerobic capacity but did not have an impact on CKD progression or bone properties. Future studies should seek to better understand carnitine doses in conditions of compromised renal function to prevent toxicity which may result from elevated carnitine levels and to optimize exercise prescriptions for musculoskeletal health.
Collapse
Affiliation(s)
- Ashley D. Troutman
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN
| | - Shruthi Srinivasan
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Corinne E. Metzger
- Department of Anatomy, Physiology and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Paul B. Fallen
- Department of Anatomy, Physiology and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Neal Chen
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Kalisha D. O’Neill
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Matthew R. Allen
- Department of Anatomy, Physiology and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
- Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Annabel Biruete
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Nutrition Science, Purdue University, West Lafayette Indiana
| | - Sharon M. Moe
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Physiology and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Keith G. Avin
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
2
|
Avin KG, Hughes MC, Chen NX, Srinivasan S, O’Neill KD, Evan AP, Bacallao RL, Schulte ML, Moorthi RN, Gisch DL, Perry CGR, Moe SM, O’Connell TM. Skeletal muscle metabolic responses to physical activity are muscle type specific in a rat model of chronic kidney disease. Sci Rep 2021; 11:9788. [PMID: 33963215 PMCID: PMC8105324 DOI: 10.1038/s41598-021-89120-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/14/2021] [Indexed: 02/03/2023] Open
Abstract
Chronic kidney disease (CKD) leads to musculoskeletal impairments that are impacted by muscle metabolism. We tested the hypothesis that 10-weeks of voluntary wheel running can improve skeletal muscle mitochondria activity and function in a rat model of CKD. Groups included (n = 12-14/group): (1) normal littermates (NL); (2) CKD, and; (3) CKD-10 weeks of voluntary wheel running (CKD-W). At 35-weeks old the following assays were performed in the soleus and extensor digitorum longus (EDL): targeted metabolomics, mitochondrial respiration, and protein expression. Amino acid-related compounds were reduced in CKD muscle and not restored by physical activity. Mitochondrial respiration in the CKD soleus was increased compared to NL, but not impacted by physical activity. The EDL respiration was not different between NL and CKD, but increased in CKD-wheel rats compared to CKD and NL groups. Our results demonstrate that the soleus may be more susceptible to CKD-induced changes of mitochondrial complex content and respiration, while in the EDL, these alterations were in response the physiological load induced by mild physical activity. Future studies should focus on therapies to improve mitochondrial function in both types of muscle to determine if such treatments can improve the ability to adapt to physical activity in CKD.
Collapse
Affiliation(s)
- Keith G. Avin
- Division of Nephrology, Indiana University School of Medicine, 950 W. Walnut St., R2 202, Indianapolis, IN 46202 USA ,Department of Physical Therapy, Indiana University School of Health and Human Sciences, Indianapolis, IN USA ,Roudebush Veterans Affairs Medical Center, Indianapolis, IN USA
| | - Meghan C. Hughes
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON Canada
| | - Neal X. Chen
- Division of Nephrology, Indiana University School of Medicine, 950 W. Walnut St., R2 202, Indianapolis, IN 46202 USA ,Roudebush Veterans Affairs Medical Center, Indianapolis, IN USA
| | - Shruthi Srinivasan
- Division of Nephrology, Indiana University School of Medicine, 950 W. Walnut St., R2 202, Indianapolis, IN 46202 USA ,Roudebush Veterans Affairs Medical Center, Indianapolis, IN USA
| | - Kalisha D. O’Neill
- Division of Nephrology, Indiana University School of Medicine, 950 W. Walnut St., R2 202, Indianapolis, IN 46202 USA ,Roudebush Veterans Affairs Medical Center, Indianapolis, IN USA
| | - Andrew P. Evan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Robert L. Bacallao
- Division of Nephrology, Indiana University School of Medicine, 950 W. Walnut St., R2 202, Indianapolis, IN 46202 USA ,Roudebush Veterans Affairs Medical Center, Indianapolis, IN USA
| | - Michael L. Schulte
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
| | - Ranjani N. Moorthi
- Division of Nephrology, Indiana University School of Medicine, 950 W. Walnut St., R2 202, Indianapolis, IN 46202 USA
| | - Debora L. Gisch
- Departamento de Engenharia Mecânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Christopher G. R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON Canada
| | - Sharon M. Moe
- Division of Nephrology, Indiana University School of Medicine, 950 W. Walnut St., R2 202, Indianapolis, IN 46202 USA ,Roudebush Veterans Affairs Medical Center, Indianapolis, IN USA ,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Thomas M. O’Connell
- Department of Otolaryngology, Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
3
|
Johansen KL. From People to Lab Rats to People-Study of Exercise in CKD. J Am Soc Nephrol 2019; 30:1777-1778. [PMID: 31501356 DOI: 10.1681/asn.2019080822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Kirsten L Johansen
- Division of Nephrology, Hennepin Healthcare, Minneapolis, Minnesota; .,Chronic Disease Research Group, Hennepin Healthcare Research Institute, Minneapolis, Minnesota; and.,Division of Nephrology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
4
|
Avin KG, Allen MR, Chen NX, Srinivasan S, O'Neill KD, Troutman AD, Mast G, Swallow EA, Brown MB, Wallace JM, Zimmers TA, Warden SJ, Moe SM. Voluntary Wheel Running Has Beneficial Effects in a Rat Model of CKD-Mineral Bone Disorder (CKD-MBD). J Am Soc Nephrol 2019; 30:1898-1909. [PMID: 31501355 DOI: 10.1681/asn.2019040349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/16/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Reduced bone and muscle health in individuals with CKD contributes to their higher rates of morbidity and mortality. METHODS We tested the hypothesis that voluntary wheel running would improve musculoskeletal health in a CKD rat model. Rats with spontaneous progressive cystic kidney disease (Cy/+ IU) and normal littermates (NL) were given access to a voluntary running wheel or standard cage conditions for 10 weeks starting at 25 weeks of age when the rats with kidney disease had reached stage 2-3 of CKD. We then measured the effects of wheel running on serum biochemistry, tissue weight, voluntary grip strength, maximal aerobic capacity (VO2max), body composition and bone micro-CT and mechanics. RESULTS Wheel running improved serum biochemistry with decreased creatinine, phosphorous, and parathyroid hormone in the rats with CKD. It improved muscle strength, increased time-to-fatigue (for VO2max), reduced cortical porosity and improved bone microarchitecture. The CKD rats with voluntary wheel access also had reduced kidney cystic weight and reduced left ventricular mass index. CONCLUSIONS Voluntary wheel running resulted in multiple beneficial systemic effects in rats with CKD and improved their physical function. Studies examining exercise interventions in patients with CKD are warranted.
Collapse
Affiliation(s)
- Keith G Avin
- Division of Nephrology and .,Department of Physical Therapy, Indiana University School of Health and Human Sciences, Indianapolis, Indiana; and.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Matthew R Allen
- Division of Nephrology and.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana.,Departments of Medicine, Anatomy and Cell Biology, and
| | - Neal X Chen
- Division of Nephrology and.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Shruthi Srinivasan
- Division of Nephrology and.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Kalisha D O'Neill
- Division of Nephrology and.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Ashley D Troutman
- Department of Physical Therapy, Indiana University School of Health and Human Sciences, Indianapolis, Indiana; and
| | - Garrison Mast
- Departments of Medicine, Anatomy and Cell Biology, and
| | | | - Mary Beth Brown
- Department of Physical Therapy, Indiana University School of Health and Human Sciences, Indianapolis, Indiana; and
| | - Joseph M Wallace
- Division of Nephrology and.,Departments of Medicine, Anatomy and Cell Biology, and
| | - Teresa A Zimmers
- Medicine and General Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stuart J Warden
- Department of Physical Therapy, Indiana University School of Health and Human Sciences, Indianapolis, Indiana; and.,Departments of Medicine, Anatomy and Cell Biology, and
| | - Sharon M Moe
- Division of Nephrology and.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana.,Departments of Medicine, Anatomy and Cell Biology, and
| |
Collapse
|
5
|
Togoe EB, Silva IS, Cury JL, Guarnier FA. Muscle changes with high-intensity aerobic training in an animal model of renal disease. Acta Cir Bras 2019; 34:e201900503. [PMID: 31166462 PMCID: PMC6583927 DOI: 10.1590/s0102-865020190050000003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose: To analyze the muscle changes with high-intensity aerobic training (HIAT) in an animal model of renal disease (RD). Methods: Twenty one adult Wistar rats were divided into 3 groups: healthy sedentary (HS), RD sedentary (RDS), RD aerobic training (RDAT). RDS and RDAT were subjected to unilateral renal ischemia-reperfusion (10 min) and 21days after that, RDAT was subjected to 6 weeks HIAT (swimming). Serum creatinine (Cr) and muscle morphometry (cross-sectional area = CSA) of gastrocnemius were analyzed. Results: Cr was higher (p = 0.0053) in RDS (0.82 ± 0.04) than in the others (RDAT 0.55 ± 0.04; HS 0.55 ± 0.04). Morphometric analysis (class interval of CSA in μm2/absolute frequency of muscle fibers in each class) indicated that 50th percentile occurred in: HS 7th class (3000.00-3499.00/515), RDS, 8th class (3500.00-3999.00/484), RDAT 5th class (2000.00-2499.00/856). CSA of largest fibers in RDS, RDAT, HS was 9953.00 μm2, 9969.00 μm2,11228.00 μm2, respectively. High frequency of fibers with lower CSA occurred in 4th, 5th, 6th and 7th class in RDA, absence of fibers into 22nd, 23rd classes (RDS and RDAT). Conclusion: HIAT in an animal model of RD resulted in increased the number of muscle fibers with smaller CSA.
Collapse
Affiliation(s)
- Eliane Barbosa Togoe
- Postgraduate Program in Health and Development in Midwest Region, Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Iandara Schettert Silva
- School of Medicine, Postgraduate Program in Health and Development in Midwest Region, UFMS, Campo Grande, MS, Brazil
| | | | | |
Collapse
|