1
|
Sui X, Sun Y, Zhang G, Chi N, Guan Y, Wang D, Li X. hsa-mir-133a-2 promotes the proliferation and invasion of cervical cancer cells by targeting the LAMB3-mediated PI3K/ATK pathway. Cancer Med 2023; 12:5874-5888. [PMID: 36305754 PMCID: PMC10028115 DOI: 10.1002/cam4.5380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Cervical cancer, one of the common types of malignant tumors progressed in women, is on the rise in developing countries. Numerous previous studies have demonstrated that hsa-mir-133a-2 miRNA is abnormally expressed in cervical cancer cells. However, its fundamental mechanism in cervical cancer needs to be further clarified. Our study set out to investigate the effect of hsa-mir-133a-2 on the phenotypes of cervical cancer cells as well as any potential molecular processes involved in the proliferation and invasion of cervical cancer cells. METHODS The Cancer Genome Atlas-cervical squamous cell carcinoma and endocervical adenocarcinoma(TCGA-CESC) was adopted in order to verify the expression of hsa-mir-133a-2 in cervical cancer tissues and to identify its potential targets. The interaction between Laminin subunit beta-3(LAMB3) and hsa-mir-133a-2 was verified by TargetScan database as well as Luciferase reporter assay. The Cell Counting Kit-8 (CCK8) and transwell methods were utilized to assess the influence of hsa-mir-133a-2 on the proliferation and invasion characteristics of cervical cancer cells. We studied the role that hsa-mir-133a-2 plays in cervical cancer progression through Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis as well as Western Blot (WB) experiment. RESULTS Down-regulation of hsa-mir-133a-2 was detected in cervical cancer tissues. It directly targeted LAMB3 and negatively regulated LAMB3 expression. The overexpression of hsa-mir-133a-2 has a significant inhibiting effect on cervical cancer cell proliferation and invasion. The overexpression of hsa-mir-133a-2 significantly inhibits the proliferation and invasion of cervical cancer cells. Moreover, the LAMB3 was able to up-regulate the phosphorylation levels of AKT and phosphatidylinositol 3-kinase (PI3K) protein in cervical cancer cells. hsa-mir-133a-2 could also modulate the PI3K/AKT signaling pathway by targeting LAMB3. CONCLUSION hsa-mir-133a-2 inhibits cervical cancer cell proliferation and invasion by indirectly regulating the PI3K/AKT signaling pathway, providing us with a new clinical treatment strategy for cervical cancer.
Collapse
Affiliation(s)
- Xiaoyu Sui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, P. R. China
| | - Yurong Sun
- Teaching and Research Section of Pathology, Qiqihar Medical University, Qiqihar, P. R. China
| | - Guiyu Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong, P. R. China
| | - Na Chi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, P. R. China
| | - Yitong Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, P. R. China
| | - Dan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, P. R. China
| | - Xiulan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, P. R. China
| |
Collapse
|
2
|
Sajid M, Liu L, Sun C. The Dynamic Role of NK Cells in Liver Cancers: Role in HCC and HBV Associated HCC and Its Therapeutic Implications. Front Immunol 2022; 13:887186. [PMID: 35669776 PMCID: PMC9165341 DOI: 10.3389/fimmu.2022.887186] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains an important complication of chronic liver disease, especially when cirrhosis occurs. Existing treatment strategies include surgery, loco-regional techniques, and chemotherapy. Natural killer cells are distinctive cytotoxic lymphocytes that play a vital role in fighting tumors and infections. As an important constituent of the innate immune system against cancer, phenotypic and functional deviations of NK cells have been demonstrated in HCC patients who also exhibit perturbation of the NK-activating receptor/ligand axis. The rate of recurrence of tumor-infiltrating and circulating NK cells are positively associated with survival benefits in HCC and have prognostic significance, suggesting that NK cell dysfunction is closely related to HCC progression. NK cells are the first-line effector cells of viral hepatitis and play a significant role by directly clearing virus-infected cells or by activating antigen-specific T cells by producing IFN-γ. In addition, chimeric antigen receptor (CAR) engineered NK cells suggest an exclusive opportunity to produce CAR-NKs with several specificities with fewer side effects. In the present review, we comprehensively discuss the innate immune landscape of the liver, particularly NK cells, and the impact of tumor immune microenvironment (TIME) on the function of NK cells and the biological function of HCC. Furthermore, the role of NK cells in HCC and HBV-induced HCC has also been comprehensively elaborated. We also elaborate on available NK cell-based immunotherapeutic approaches in HCC treatment and summarize current advancements in the treatment of HCC. This review will facilitate researchers to understand the importance of the innate immune landscape of NK cells and lead to devising innovative immunotherapeutic strategies for the systematic treatment of HCC.
Collapse
Affiliation(s)
- Muhammad Sajid
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
- Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
| | - Cheng Sun
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
- Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
3
|
Yi Y, Qiu Z, Yao Z, Lin A, Qin Y, Sha R, Wei T, Wang Y, Cheng Q, Zhang J, Luo P, Shen W. CAMSAP1 Mutation Correlates With Improved Prognosis in Small Cell Lung Cancer Patients Treated With Platinum-Based Chemotherapy. Front Cell Dev Biol 2022; 9:770811. [PMID: 35087829 PMCID: PMC8787262 DOI: 10.3389/fcell.2021.770811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Platinum-based chemotherapy is the first-line treatment for small cell lung cancer (SCLC). However, due to patients developing a resistance to the drug, most experience relapse and their cancer can become untreatable. A large number of recent studies have found that platinum drug sensitivity of various cancers is affected by specific gene mutations, and so with this study, we attempted to find an effective genetic biomarker in SCLC patients that indicates their sensitivity to platinum-based drugs. To do this, we first analyzed whole exome sequencing (WES) and clinical data from two cohorts to find gene mutations related to the prognosis and to the platinum drug sensitivity of SCLC patients. The cohorts used were the Zhujiang cohort (N = 138) and the cohort reported by George et al. (N = 101). We then carried out gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) to investigate possible molecular mechanisms through which these gene mutations affect patient prognosis and platinum drug sensitivity. We found that for SCLC patients, CAMSAP1 mutation can activate anti-tumor immunity, mediate tumor cell apoptosis, inhibit epithelial-mesenchymal transition (EMT), improve prognosis, and improve platinum drug sensitivity, suggesting that CAMSAP1 mutation may be a potential biomarker indicating platinum drug sensitivity and patient prognosis in SCLC.
Collapse
Affiliation(s)
- Yonglin Yi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengang Qiu
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, Guangzhou, China
| | - Zifu Yao
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yimin Qin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ruizhan Sha
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanru Wang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weitao Shen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|