1
|
Jiang Y, Wang S, Zhu W, Liu X, Yang Y, Huo L, Ye J, Ma Y, Zhou Y, Yang Z, Mao J, Wang X. Lysyl Oxidase-Like 1 (LOXL1) Up-Regulation in Chondrocytes Promotes M1 Macrophage Activation in Osteoarthritis via NF-κB and STAT3 Signaling. Immunotargets Ther 2025; 14:259-278. [PMID: 40161479 PMCID: PMC11951931 DOI: 10.2147/itt.s512768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/16/2025] [Indexed: 04/02/2025] Open
Abstract
Purpose Osteoarthritis (OA) constitutes a widespread degenerative joint disease predominantly affecting the elderly, leading to disability. There is still a lack of biomarkers for OA, so it cannot be intervened in time. Methods OA biomarkers were identified from human cartilage datasets using LASSO and SVM-RFE, followed by ROC analysis. LOXL1 was prioritized for further research due to its high expression in OA cartilage and robust predictive performance. Anterior cruciate ligament transection (ACLT) surgery-induced OA rats were used to explore the correlation between LOXL1 and inflammatory factors and macrophages. Macrophage markers and cytokine secretion were detected from macrophages treated with LOXL1, or co-cultured with chondrocytes after LOXL1 siRNA silencing. Results Five hub biomarkers with OA-specific expression were identified. Elevated LOXL1 correlated with IL-6 and IL-8 in patients and increased M1 macrophages in OA rats. LOXL1-stimulated macrophages upregulated CD86 and inflammatory cytokines. Silencing LOXL1 in chondrocytes reduced CD86, inflammatory cytokines, and NF-κB p65 and p-STAT3 expression in co-cultured macrophages, mitigating MMP13 and chondrocyte apoptosis. STAT3 and NF-κB signal inhibition reduces p-STAT3, p-p65, CD86, IL-6 and IL-1β expression in LOXL1-stimulated macrophages. Conclusion This study underscores the pivotal role of LOXL1 in activating M1 macrophages through NF-κB and STAT3 signaling, thereby promoting pro-inflammatory cytokine secretion and contributing to OA pathogenesis. LOXL1 holds promise as a potential marker for early diagnosis of OA inflammation and as a novel therapeutic target.
Collapse
Affiliation(s)
- Yuyun Jiang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Shang Wang
- Tzu Chi International College of Traditional Chinese Medicine, Vancouver, BC, Canada
| | - Wei Zhu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
- Department of Sports Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Xi Liu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Yanwei Yang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Liyue Huo
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Jixian Ye
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Yongbin Ma
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
- Department of Central Laboratory, Jintan Hospital, Jiangsu University, Jintan, 213200, People’s Republic of China
| | - Yuepeng Zhou
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Zhe Yang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Jiahui Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
- Department of Nuclear Medicine, Institute of Digestive Diseases, and Institute of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| |
Collapse
|
2
|
Swetha K, Indumathi MC, Kishan R, Siddappa S, Chen CH, Marathe GK. Selenium Mitigates Caerulein and LPS-induced Severe Acute Pancreatitis by Inhibiting MAPK, NF-κB, and STAT3 Signaling via the Nrf2/HO-1 Pathway. Biol Trace Elem Res 2025:10.1007/s12011-025-04531-2. [PMID: 39907886 DOI: 10.1007/s12011-025-04531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Severe acute pancreatitis (SAP) leads to systemic inflammation, resulting in multiorgan damage. Acute lung injury and acute respiratory distress syndrome develop in one-third of SAP patients, with a high mortality rate of 60% due to secondary complications. Patients with pancreatitis often have selenium deficiency, and selenium supplements may provide beneficial effects. This study examined the protective role of selenium in a model of SAP induced by caerulein + lipopolysaccharide (cae + LPS). Mice were administered selenium (1 mg/kg) before being challenged with caerulein (6 injections of 50 μg/kg) and LPS (10 mg/kg). At 3 h after the last caerulein injection, blood was collected for estimating pancreatic enzymes and cytokine levels, and the mice were euthanized. We performed morphological and histological studies, measured levels of protease and oxidative stress markers and conducted western blot, ELISA, and RT-qPCR analyses. We examined lung tissue histologically and estimated myeloperoxidase levels. Selenium pretreatment significantly reduced pancreatic enzyme levels such as amylase, lipase, and proteases (specifically MMPs) and reversed tissue injury in the pancreas and lungs caused by cae + LPS. In addition, selenium-treated mice showed decreased levels of inflammatory markers and chemokines. Examination of the downstream inflammatory pathways confirmed the protective effect of selenium, which mediates its anti-inflammatory and antioxidant action by inhibiting the major inflammatory signaling pathways (MAPKs, NF-κB, and STAT3) and activating the phosphorylation of Nrf2 via Nrf2/HO-1 pathways. These findings suggest that selenium may be a potential therapeutic option for treating SAP-associated secondary complications.
Collapse
Affiliation(s)
- Kamatam Swetha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri Mysore, 570006, India
| | | | - Raju Kishan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri Mysore, 570006, India
| | - Shiva Siddappa
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, 570015, India
| | - Chu-Huang Chen
- Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, 77030, USA
| | - Gopal K Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri Mysore, 570006, India.
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri Mysore, 570006, India.
| |
Collapse
|
3
|
Feng MC, Luo F, Huang LJ, Li K, Chen ZM, Li H, Yao C, Qin BJ, Chen GZ. Rheum palmatum L. and Salvia miltiorrhiza Bge. Alleviates Acute Pancreatitis by Regulating Th17 Cell Differentiation: An Integrated Network Pharmacology Analysis, Molecular Dynamics Simulation and Experimental Validation. Chin J Integr Med 2024; 30:408-420. [PMID: 37861962 DOI: 10.1007/s11655-023-3559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE To identify the core targets of Rheum palmatum L. and Salvia miltiorrhiza Bge., (Dahuang-Danshen, DH-DS) and the mechanism underlying its therapeutic efficacy in acute pancreatitis (AP) using a network pharmacology approach and validate the findings in animal experiments. METHODS Network pharmacology analysis was used to elucidate the mechanisms underlying the therapeutic effects of DH-DS in AP. The reliability of the results was verified by molecular docking simulation and molecular dynamics simulation. Finally, the results of network pharmacology enrichment analysis were verified by immunohistochemistry, Western blot analysis and real-time quantitative PCR, respectively. RESULTS Sixty-seven common targets of DH-DS in AP were identified and mitogen-activated protein kinase 3 (MAPK3), Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), protein c-Fos (FOS) were identified as core targets in the protein interaction (PPI) network analysis. Gene ontology analysis showed that cellular response to organic substance was the main functions of DH-DS in AP, and Kyoto Encyclopedia of Genes and Genomes analysis showed that the main pathway included Th17 cell differentiation. Molecular docking simulation confirmed that DH-DS binds with strong affinity to MAPK3, STAT3 and FOS. Molecular dynamics simulation revealed that FOS-isotanshinone II and STAT3-dan-shexinkum d had good binding capacity. Animal experiments indicated that compared with the AP model group, DH-DS treatment effectively alleviated AP by inhibiting the expression of interleukin-1β, interleukin-6 and tumor necrosis factor-α, and blocking the activation of Th17 cell differentiation (P<0.01). CONCLUSION DH-DS could inhibit the expression of inflammatory factors and protect pancreatic tissues, which would be functioned by regulating Th17 cell differentiation-related mRNA and protein expressions.
Collapse
Affiliation(s)
- Min-Chao Feng
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Fang Luo
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Liang-Jiang Huang
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Kai Li
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Zu-Min Chen
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Hui Li
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Chun Yao
- Graduate School, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
| | - Bai-Jun Qin
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Guo-Zhong Chen
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, 530023, China.
| |
Collapse
|
4
|
Peng K, Biao C, Zhao YY, Jun LC, Wei W, A Bu Li Zi YLNYZ, Song L. Long non-coding RNA MM2P suppresses M1-polarized macrophages-mediated excessive inflammation to prevent sodium taurocholate-induced acute pancreatitis by blocking SHP2-mediated STAT3 dephosphorylation. Clin Exp Med 2023; 23:3589-3603. [PMID: 37486591 DOI: 10.1007/s10238-023-01126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
M1 macrophage-mediated excessive inflammatory response plays a key role in the onset and progression of acute pancreatitis (AP), and this study aimed to investigate the role and underlying mechanisms by which the macrophage polarization-related long noncoding RNA (lncRNA) MM2P participated in the regulation of AP progression. By performing quantitative reverse-transcription PCR (qRT-PCR) assay, lncRNA MM2P was found to be downregulated in both sodium taurocholate-induced AP model mice tissues and lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and gain-of-function experiments confirmed that overexpression of lncRNA MM2P counteracted inflammatory responses, reduced macrophage infiltration and facilitated M1-to-M2 transformation of macrophages to ameliorate AP development in vitro and in vivo. Further mechanical experiments revealed that lncRNA MM2P inhibited Src homology 2 containing protein tyrosine phosphatase 2 (SHP2)-mediated signal transducer and activator of transcription 3 (STAT3) dephosphorylation to activate the STAT3 signaling, and silencing of SHP2 suppressed M1 type skewing in LPS-induced RAW264.7 cells. Interestingly, our rescuing experiments verified that lncRNA MM2P-induced suppressing effects on M1-polarization of LPS-treated RAW264.7 cells were abrogated by co-treating cells with STAT3 inhibitor stattic. Collectively, our data for the first time revealed that lncRNA MM2P suppressed M1-polarized macrophages to attenuate the progression of sodium taurocholate-induced AP, and lncRNA MM2P might be an ideal biomarker for AP diagnosis and treatment.
Collapse
Affiliation(s)
- Kang Peng
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | - Chen Biao
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | - Yin Yong Zhao
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | - Li Chao Jun
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | - Wang Wei
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | | | - Lin Song
- General Surgery Department, The First People's Hospital of Urumqi (Children's Hospital of Urumqi), Jiankang Road No. 1, Tianshan District, Urumqi, 830002, Xinjiang, China.
| |
Collapse
|
5
|
Xia T, Zhang M, Lei W, Yang R, Fu S, Fan Z, Yang Y, Zhang T. Advances in the role of STAT3 in macrophage polarization. Front Immunol 2023; 14:1160719. [PMID: 37081874 PMCID: PMC10110879 DOI: 10.3389/fimmu.2023.1160719] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
The physiological processes of cell growth, proliferation, differentiation, and apoptosis are closely related to STAT3, and it has been demonstrated that aberrant STAT3 expression has an impact on the onset and progression of a number of inflammatory immunological disorders, fibrotic diseases, and malignancies. In order to produce the necessary biological effects, macrophages (M0) can be polarized into pro-inflammatory (M1) and anti-inflammatory (M2) types in response to various microenvironmental stimuli. STAT3 signaling is involved in macrophage polarization, and the research of the effect of STAT3 on macrophage polarization has gained attention in recent years. In order to provide references for the treatment and investigation of disorders related to macrophage polarization, this review compiles the pertinent signaling pathways associated with STAT3 and macrophage polarization from many fundamental studies.
Collapse
Affiliation(s)
- Tingting Xia
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Meng Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei Lei
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ruilin Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shengping Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhenhai Fan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ying Yang
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- *Correspondence: Tao Zhang,
| |
Collapse
|
6
|
Liu D, Wen L, Wang Z, Hai Y, Yang D, Zhang Y, Bai M, Song B, Wang Y. The Mechanism of Lung and Intestinal Injury in Acute Pancreatitis: A Review. Front Med (Lausanne) 2022; 9:904078. [PMID: 35872761 PMCID: PMC9301017 DOI: 10.3389/fmed.2022.904078] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP), as a common cause of clinical acute abdomen, often leads to multi-organ damage. In the process of severe AP, the lungs and intestines are the most easily affected organs aside the pancreas. These organ damages occur in succession. Notably, lung and intestinal injuries are closely linked. Damage to ML, which transports immune cells, intestinal fluid, chyle, and toxic components (including toxins, trypsin, and activated cytokines to the systemic circulation in AP) may be connected to AP. This process can lead to the pathological changes of hyperosmotic edema of the lung, an increase in alveolar fluid level, destruction of the intestinal mucosal structure, and impairment of intestinal mucosal permeability. The underlying mechanisms of the correlation between lung and intestinal injuries are inflammatory response, oxidative stress, and endocrine hormone secretion disorders. The main signaling pathways of lung and intestinal injuries are TNF-α, HMGB1-mediated inflammation amplification effect of NF-κB signal pathway, Nrf2/ARE oxidative stress response signaling pathway, and IL-6-mediated JAK2/STAT3 signaling pathway. These pathways exert anti-inflammatory response and anti-oxidative stress, inhibit cell proliferation, and promote apoptosis. The interaction is consistent with the traditional Chinese medicine theory of the lung being connected with the large intestine (fei yu da chang xiang biao li in Chinese). This review sought to explore intersecting mechanisms of lung and intestinal injuries in AP to develop new treatment strategies.
Collapse
Affiliation(s)
- Dongling Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Linlin Wen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- County People’s Hospital, Pingliang, China
| | - Zhandong Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yang Hai
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
| | - Dan Yang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yanying Zhang
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Min Bai
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Bing Song
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Yongfeng Wang
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| |
Collapse
|