1
|
Medouni-Haroune L, Medouni-Adrar S, Houfani AA, Bouiche C, Azzouz Z, Roussos S, Desseaux V, Madani K, Kecha M. Statistical Optimization and Partial Characterization of Xylanases Produced by Streptomyces sp. S1M3I Using Olive Pomace as a Fermentation Substrate. Appl Biochem Biotechnol 2024; 196:2012-2030. [PMID: 37458941 DOI: 10.1007/s12010-023-04660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 04/23/2024]
Abstract
Xylanase production by Streptomyces sp. S1M3I was optimized by response surface methodology (RSM), followed by a partial characterization of these enzymes. Olive pomace was used as a substrate for growing Streptomyces sp. S1M3I in submerged fermentation. Effects of incubation time, pH, temperature, carbon source, nitrogen source, and inoculum size on xylanase production were studied, through the one-factor-at-a-time method. Then, a 33-factorial experimental design with RSM and the Box-Behnken design was investigated for the major influence factors. Maximum xylanase production (11.28 U/mL) was obtained when the strain was grown in mineral medium supplemented with 3% (w/v) of olive pomace powder and 0.3% (w/v) of ammonium sulfate, at a pH 7.4 and an incubation temperature of 40 °C. The xylanases in the supernatant degraded all tested substrates, with higher activity for the low-viscosity wheat arabinoxylan substrate. Two xylanases with close molecular masses were detected by zymogram analysis: Xyl-1 and Xyl-2 with molecular masses of 24.14 kDa and 27 kDa, respectively. The optimization of enzyme production parameters of Streptomyces sp. S1M3I and the characterization of these enzymes are prerequisites to enhancing xylanase production yield, which is crucial for further biotechnological processes.
Collapse
Affiliation(s)
- Lamia Medouni-Haroune
- Centre de Recherche en Technologies Agroalimentaires, Route de Targa Ouzemmour, Campus Universitaire, 06000, Bejaia, Algeria.
| | - Sonia Medouni-Adrar
- Département Des Sciences Alimentaires, Faculté Des Sciences de La Nature Et de La Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Aicha Asma Houfani
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Cilia Bouiche
- Centre de Recherche en Technologies Agroalimentaires, Route de Targa Ouzemmour, Campus Universitaire, 06000, Bejaia, Algeria
| | - Zahra Azzouz
- Laboratoire de Microbiologie Appliquée, Faculté Des Sciences de La Nature Et de La Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Sevastianos Roussos
- Equipe Eco Technologies Et Bioremédiation, Faculté St Jérome, Campus Etoile, Aix Marseille Université & Université Avignon; IMBE UMR CNRS-7263/IRD-237, Case 421, 13397, Cedex 20, Marseille, France
| | - Véronique Desseaux
- Institut Des Sciences Moléculaires de Marseille, Faculté Des Sciences Et Techniques, St Jérome, Biosciences UMR CNRS 6263.Université Paul Cézanne, 13397, Cedex 20, Marseille, France
| | - Khodir Madani
- Centre de Recherche en Technologies Agroalimentaires, Route de Targa Ouzemmour, Campus Universitaire, 06000, Bejaia, Algeria
| | - Mouloud Kecha
- Laboratoire de Microbiologie Appliquée, Faculté Des Sciences de La Nature Et de La Vie, Université de Bejaia, 06000, Bejaia, Algeria
| |
Collapse
|
2
|
Oz Tuncay F, Cakmak U, Kolcuoglu Y. Aqueous two-phase extraction and characterization of thermotolerant alkaliphilic Cladophora hutchinsiae xylanase: biochemical properties and potential applications in fruit juice clarification and fish feed supplementation. Prep Biochem Biotechnol 2024; 54:553-563. [PMID: 37668166 DOI: 10.1080/10826068.2023.2253469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Xylanase finds extensive applications in diverse biotechnological fields such as biofuel production, pulp and paper industry, baking and brewing industry, food and feed industry, and deinking of waste paper. Here, polyethylene glycol (PEG)-phosphate aqueous two-phase system (ATPS) was applied for the purification of an alkaline active and thermotolerant xylanase from a marine source, Cladophora hutchinsiae (C. hutchinsiae). In the purification process, the effects of some experimental factors such as PEG concentration and PEG molar mass, potassium phosphate(K2HP04) concentration, and pH on xylanase distribution were systematically investigated. Relative enzymatic activity and purification factor obtained were 93.21% and 7.18, respectively. A single protein band of 28 kDa was observed on SDS-PAGE. The optimum temperature and pH of xylanase with beechwood xylan were 30 °C and 9.0, respectively. The Lineweaver-Burk graph was utilized to determine the Km (4.5 ± 0.8 mg/mL), Vmax (0.04 ± 0.01 U) and kcat (0.001 s-1) values of the enzyme. It was observed that the purified xylanase maintained 70% of its activity at 4 °C and was found stable at pH 4.0 by retaining almost all of its activity. Enzymatic activity was slightly enhanced with Na+, K+, Ca2+ and acetone. The highest increase in the reducing sugar amount was 53.6 ± 3.8, for orange juice at 50 U/mL enzyme concentration.
Collapse
Affiliation(s)
- Fulya Oz Tuncay
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Ummuhan Cakmak
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Yakup Kolcuoglu
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
3
|
Intensification of endo-1,4-Xylanase Extraction by Coupling Microextractors and Aqueous Two-Phase System. Processes (Basel) 2023. [DOI: 10.3390/pr11020447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extraction of xylanase was performed using an aqueous two-phase system (ATPS) based on polyethylene glycol (PEG1540) and various salts. Preliminary studies in a batch extractor showed that the highest extraction efficiency, E = 79.63 ± 5.21%, and purification factor, PF = 1.26 ± 0.25, were obtained with sodium citrate dihydrate-H2O-PEG1540-based ATPS for an extraction time of 10 min. The process was optimized using the experimental Box-Behnken design at three levels with three factors: extraction time (t), xylanase concentration (γ), and mass fraction of PEG in the ATPS (wPEG). Under optimal process conditions (γ = 0.3 mg/mL, wPEG = 0.21 w/w, and t = 15 min), E = 99.13 ± 1.20% and PF = 6.49 ± 0.05 were achieved. In order to intensify the process, the extraction was performed continuously in microextractors at optimal process conditions. The influence of residence time, different feeding strategies, and channel diameter on extraction efficiency and purification factor was further examined. Similar results were obtained in the microextractor for a residence time of τ = 1.03 min (E = 99.59 ± 1.22% and PF = 6.61 ± 0.07) as in the experiment carried out under optimal conditions in the batch extractor. In addition, a batch extractor and a continuous microextractor were used for the extraction of raw xylanase produced by Thermomyces lanuginosus on solid supports.
Collapse
|
4
|
Taddia A, Rito-Palomares M, Mayolo-Deloisa K, Tubio G. Purification of xylanase from Aspergillus niger NRRL3 extract by an integrated strategy based on aqueous two-phase systems followed by ion exchange chromatography. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Bhardwaj N, Kumar B, Verma P. A detailed overview of xylanases: an emerging biomolecule for current and future prospective. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0276-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Xylan is the second most abundant naturally occurring renewable polysaccharide available on earth. It is a complex heteropolysaccharide consisting of different monosaccharides such as l-arabinose, d-galactose, d-mannoses and organic acids such as acetic acid, ferulic acid, glucuronic acid interwoven together with help of glycosidic and ester bonds. The breakdown of xylan is restricted due to its heterogeneous nature and it can be overcome by xylanases which are capable of cleaving the heterogeneous β-1,4-glycoside linkage. Xylanases are abundantly present in nature (e.g., molluscs, insects and microorganisms) and several microorganisms such as bacteria, fungi, yeast, and algae are used extensively for its production. Microbial xylanases show varying substrate specificities and biochemical properties which makes it suitable for various applications in industrial and biotechnological sectors. The suitability of xylanases for its application in food and feed, paper and pulp, textile, pharmaceuticals, and lignocellulosic biorefinery has led to an increase in demand of xylanases globally. The present review gives an insight of using microbial xylanases as an “Emerging Green Tool” along with its current status and future prospective.
Collapse
|
6
|
Shahbazmohammadi H, Sardari S, Omidinia E. Optimization of aqueous two-phase partitioning for purification of recombinant Eupenicillium terrenum fructosyl peptide oxidase. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Bhardwaj N, Kumar B, Agarwal K, Chaturvedi V, Verma P. Purification and characterization of a thermo-acid/alkali stable xylanases from Aspergillus oryzae LC1 and its application in Xylo-oligosaccharides production from lignocellulosic agricultural wastes. Int J Biol Macromol 2019; 122:1191-1202. [DOI: 10.1016/j.ijbiomac.2018.09.070] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/24/2018] [Accepted: 09/12/2018] [Indexed: 01/17/2023]
|
8
|
Gómez-García R, Medina-Morales MA, Rodrìguez R, Farruggia B, Picó G, Aguilar CN. Production of a xylanase by Trichoderma harzianum (Hypocrea lixii) in solid-state fermentation and its recovery by an aqueous two-phase system. CANADIAN JOURNAL OF BIOTECHNOLOGY 2018. [DOI: 10.24870/cjb.2018-000122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Shad Z, Mirhosseini H, Hussin ASM, Forghani B, Motshakeri M, Manap MYA. Aqueous two-phase purification of α-Amylase from white pitaya ( Hylocereus undatus ) peel in polyethylene glycol /citrate system: Optimization by response surface methodology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Response surface methodology optimization of partitioning of xylanase form Aspergillus Niger by metal affinity polymer-salt aqueous two-phase systems. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1063:1-10. [DOI: 10.1016/j.jchromb.2017.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 06/23/2017] [Accepted: 08/07/2017] [Indexed: 11/21/2022]
|
11
|
Response surface methodology for the evaluation of guanidine hydrochloride partitioning in polymer-salt aqueous two-phase system. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0108-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Baker’s yeast invertase purification using Aqueous Two Phase System—Modeling and optimization with PCA/LS-SVM. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2016.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Potential application of waste from castor bean (Ricinus communis L.) for production for xylanase of interest in the industry. 3 Biotech 2016; 6:144. [PMID: 28330216 PMCID: PMC4919139 DOI: 10.1007/s13205-016-0463-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/11/2016] [Indexed: 12/02/2022] Open
Abstract
Xylanases activity (XY) from Aspergillus japonicus URM5620 produced by Solid-State Fermentation (SSF) of castor press cake (Ricinus communis) on different conditions of production and extraction by PEG/citrate aqueous two-phase system (ATPS) were investigated. XY production was influenced by substrate amount (5–10 g), initial moisture (15–35 %), pH (4.0–6.0) and temperature (25–35 °C), obtaining the maximum activity of 29,085 ± 1808 U g ds−1 using 5.0 g of substrate with initial moisture of 15 % at 25 °C and pH 6.0, after 120 h of fermentation. The influence of PEG molar mass (1000–8000 g mol−1), phase concentrations (PEG 20.0–24.0 % w/w and sodium citrate 15–20 % w/w) and pH (6.0–8.0) on partition coefficient, purification factor, yield and selectivity of XY were determinate. Enzyme partitioning into the PEG rich phase was favored by MPEG 8000 (g mol−1), CPEG 24 % (w/w), CC 20 % (w/w) and pH 8.0, resulting in partition coefficient of 50.78, activity yield of 268 %, 7.20-fold purification factor and selectivity of 293. A. japonicus URM5620 has a potential role in the development of a bioprocess for the XY production using low-cost media. In addition, the present study proved it is feasible to extract xylanase from SSF by adopting the one step ATPS consisting of PEG/citrate.
Collapse
|
14
|
de Araujo Sampaio D, Sosa FHB, Martins AD, Mafra LI, Yamamoto CI, de Souza MO, de Castilhos F, Mafra MR. Assessment of Sodium Salt Anions ( $$\text{SO}_{4}^{2-}$$ SO 4 2 - and $$\text{NO}_{3}^{-}$$ NO 3 - ) Influence on Caffeine Partitioning in Polyethylene Glycol and 1-Butyl-3-Methylimidazolium Tetrafluoroborate Based ATPS. J SOLUTION CHEM 2016. [DOI: 10.1007/s10953-016-0547-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Loureiro DB, Romanini D, Tubio G. Structural and functional analysis of Aspergillus niger xylanase to be employed in polyethylenglycol/salt aqueous two-phase extraction. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2015.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Shahbaz Mohammadi H, Mostafavi SS, Soleimani S, Bozorgian S, Pooraskari M, Kianmehr A. Response surface methodology to optimize partition and purification of two recombinant oxidoreductase enzymes, glucose dehydrogenase and d -galactose dehydrogenase in aqueous two-phase systems. Protein Expr Purif 2015; 108:41-47. [DOI: 10.1016/j.pep.2015.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 01/03/2015] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
|
17
|
Atefi E, Mann JA, Tavana H. Ultralow interfacial tensions of aqueous two-phase systems measured using drop shape. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9691-9. [PMID: 25068649 DOI: 10.1021/la500930x] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Aqueous solutions of different polymers can separate and form aqueous two-phase systems (ATPS). ATPS provide an aqueous, biocompatible, and mild environment for separation and fractionation of biomolecules. The interfacial tension between the two aqueous phases plays a major role in ATPS-mediated partition of biomolecules. Because of the structure of the two aqueous phases, the interfacial tensions between the phases can be 3-4 orders of magnitude smaller than conventional fluid-liquid systems: ∼1-100 μJ/m(2) for ATPS compared to ∼72 mJ/m(2) for the water-vapor interface. This poses a major challenge for the experimental measurements of reproducible interfacial tension data for these systems. We address the need for precise determination of ultralow interfacial tensions by systematically studying a series of polymeric ATPS comprising of polyethylene glycol (PEG) and dextran (DEX) as the phase-forming polymers. Sessile and pendant drops of the denser DEX phase are formed within the immersion PEG phase. An axisymmetric drop shape analysis (ADSA) is used to determine interfacial tensions of eight different ATPS. Specific criteria are used to reproducibly determine ultralow interfacial tensions of the ATPS from pendant and sessile drops. Importantly, for a given ATPS, pendant drop and sessile drop experiments return values within 0.001 mJ/m(2) indicating reliability of our measurements. Then, the pendant drop technique is used to measure interfacial tensions of all eight ATPS. Our measured values range from 0.012 ± 0.001 mJ/m(2) to 0.381 ± 0.006 mJ/m(2) and vary with the concentration of polymers in equilibrated phases of ATPS. Measurements of ultralow interfacial tensions with such reproducibility will broadly benefit studies involving partition of different biomolecules in ATPS and elucidate the critical effect of interfacial tension.
Collapse
Affiliation(s)
- Ehsan Atefi
- Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | | | | |
Collapse
|
18
|
Kianmehr A, Pooraskari M, Mousavikoodehi B, Mostafavi SS. Recombinant d-galactose dehydrogenase partitioning in aqueous two-phase systems: effect of pH and concentration of PEG and ammonium sulfate. BIORESOUR BIOPROCESS 2014. [DOI: 10.1186/s40643-014-0006-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
19
|
Aradhana D, Sreeja HP, Sharmila G, Muthukumaran C. Optimization ofRhizopus niveusLipase Partitioning by an Aqueous Biphasic System. Chem Eng Technol 2014. [DOI: 10.1002/ceat.201300652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|