1
|
Sahu N, Mahanty B, Haldar D. Response surface methodology and artificial neural network based media optimization for pullulan production in Aureobasidium pullulans. Int J Biol Macromol 2025; 284:138045. [PMID: 39586438 DOI: 10.1016/j.ijbiomac.2024.138045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
The selection and optimization of carbon and nitrogen sources are essential for enhancing pullulan production in Aureobasidium pullulans. In this study, combinations of carbon (sucrose, fructose, glucose) and nitrogen sources ((NH4)2SO4, urea, NaNO3) were screened, where sucrose and NaNO3 offered the highest pullulan yield (9.33 g L-1). Plackett-Burman design of experiment identified KH2PO4, NaCl, and sucrose as significant factors, which were further optimized using a central composite design. A hyperparameter-optimized artificial neural network (ANN) model with a 3-6-2-1 architecture demonstrated superior predictive accuracy (R2: 0.96) and generalizability (R2CV: 0.74) over a reduced quadratic model (R2: 0.82). The predicted pullulan yield (31.9 g L-1) under ANN model optimized conditions (sucrose: 79.9 g L-1, KH2PO4: 0.25 g L-1, NaCl: 4.3 g L-1) closely matched with the observed yield (30.17 g L-1), while quadratic model showed a significant deviation (39.7 g L-1 vs. 21.0 g L-1), highlighting the reliability of the ANN model.
Collapse
Affiliation(s)
- Nageswar Sahu
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India.
| | - Biswanath Mahanty
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India.
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India.
| |
Collapse
|
2
|
Zhang H, Li Y, Fu Y, Jiao H, Wang X, Wang Q, Zhou M, Yong YC, Liu J. A structure-functionality insight into the bioactivity of microbial polysaccharides toward biomedical applications: A review. Carbohydr Polym 2024; 335:122078. [PMID: 38616098 DOI: 10.1016/j.carbpol.2024.122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Microbial polysaccharides (MPs) are biopolymers secreted by microorganisms such as bacteria and fungi during their metabolic processes. Compared to polysaccharides derived from plants and animals, MPs have advantages such as wide sources, high production efficiency, and less susceptibility to natural environmental influences. The most attractive feature of MPs lies in their diverse biological activities, such as antioxidative, anti-tumor, antibacterial, and immunomodulatory activities, which have demonstrated immense potential for applications in functional foods, cosmetics, and biomedicine. These bioactivities are precisely regulated by their sophisticated molecular structure. However, the mechanisms underlying this precise regulation are not yet fully understood and continue to evolve. This article presents a comprehensive review of the most representative species of MPs, including their fermentation and purification processes and their biomedical applications in recent years. In particular, this work presents an in-depth analysis into the structure-activity relationships of MPs across multiple molecular levels. Additionally, this review discusses the challenges and prospects of investigating the structure-activity relationships, providing valuable insights into the broad and high-value utilization of MPs.
Collapse
Affiliation(s)
- Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Mengbo Zhou
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Mishra B, Mohanta YK, Varjani S, Mandal SK, Lakshmayya NSV, Chaturvedi P, Awasthi MK, Zhang Z, Sindhu R, Binod P, Singhania RR, Kumar V. A critical review on valorization of food processing wastes and by-products for pullulan production. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2121-2131. [PMID: 37273573 PMCID: PMC10232708 DOI: 10.1007/s13197-022-05490-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/13/2022] [Accepted: 05/15/2022] [Indexed: 06/06/2023]
Abstract
Pullulan is a commercially available exopolymer biosynthesized by Aureobasidium pullulans supplemented with nitrogen, carbon and other vital components through submerged and solid-state fermentation. These nutrients are very expensive and it raises the cost for the production of pullulan. Hence, the need of alternative cost-effective raw materials for its production is a prerequisite. Owing to its unique physicochemical features, pullulan has various applications in the food, pharmacological, and biomedical domains. Food industrial wastes generate a considerable number of by-products which accumulates and has a negative influence on the environment. These by-products are made up of proteins, carbohydrates, and other components, can be employed as substrates for the production of pullulan. The present review briefs on the pullulan production using food processing waste and by-products and the elements that impact it. It provides an insight into versatile applications of pullulan in food industries. Various challenges and future prospects in the field of research on pullulan production have been uncovered.
Collapse
Affiliation(s)
- Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, 500075 India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, University of Science and Technology Meghalaya (USTM), Ri-Bhoi, Meghalaya 793101 India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010 India
| | - Sanjeeb Kumar Mandal
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, 500075 India
| | - N. S. V. Lakshmayya
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, 500075 India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, Uttar Pradesh 226001 India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100 Shaanxi Province People’s Republic of China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100 Shaanxi Province People’s Republic of China
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, Kerala 691505 India
| | - Parameswaran Binod
- CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala 695019 India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Vinod Kumar
- CSIR-Indian Institute of Integrative Medicine, Jammu, 180001 India
| |
Collapse
|
4
|
Exclusive Biosynthesis of Pullulan Using Taguchi’s Approach and Decision Tree Learning Algorithm by a Novel Endophytic Aureobasidium pullulans Strain. Polymers (Basel) 2023; 15:polym15061419. [PMID: 36987200 PMCID: PMC10058109 DOI: 10.3390/polym15061419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Pullulan is a biodegradable, renewable, and environmentally friendly hydrogel biopolymer, with potential uses in food, medicine, and cosmetics. New endophytic Aureobasidium pullulans (accession number; OP924554) was used for the biosynthesis of pullulan. Innovatively, the fermentation process was optimized using both Taguchi’s approach and the decision tree learning algorithm for the determination of important variables for pullulan biosynthesis. The relative importance of the seven tested variables that were obtained by Taguchi and the decision tree model was accurate and followed each other’s, confirming the accuracy of the experimental design. The decision tree model was more economical by reducing the quantity of medium sucrose content by 33% without a negative reduction in the biosynthesis of pullulan. The optimum nutritional conditions (g/L) were sucrose (60 or 40), K2HPO4 (6.0), NaCl (1.5), MgSO4 (0.3), and yeast extract (1.0) at pH 5.5, and short incubation time (48 h), yielding 7.23% pullulan. The spectroscopic characterization (FT-IR and 1H-NMR spectroscopy) confirmed the structure of the obtained pullulan. This is the first report on using Taguchi and the decision tree for pullulan production by a new endophyte. Further research is encouraged for additional studies on using artificial intelligence to maximize fermentation conditions.
Collapse
|
5
|
Structural Characterization of Exopolysaccharide Produced by Leuconostoccitreum B-2 Cultured in Molasses Medium and Its Application in Set Yogurt. Processes (Basel) 2022. [DOI: 10.3390/pr10050891] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sugarcane molasses is an agricultural by-product containing sucrose. In this study, the exopolysaccharide (M-EPS) produced by Leuconostoc citreum B-2 in molasses-based medium was characterized, optimized, and its application in set yogurt was investigated. The structure analysis, including gel permeation chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, revealed that the M-EPS was a linear dextran composed of D-glucose units, which were linked by α-(1→6) glycosidic bonds with 19.3% α-(1→3) branches. The M-EPS showed a lower molecular weight than that produced from sucrose. The M-EPS was added into the set yogurt, and then the water holding capacity, pH, and microstructure of set yogurt were evaluated. Compared with the controls, the addition of M-EPS improved the water holding capacity and reduced the pH of set yogurt. Meanwhile, the structure of the three-dimensional network was also observed in the set yogurt containing M-EPS, indicating that M-EPS had a positive effect on the stability of set yogurt. The results provide a theoretical basis for the cost-effective utilization of sugarcane molasses.
Collapse
|
6
|
Singh RS, Kaur N, Singh D, Bajaj BK, Kennedy JF. Downstream processing and structural confirmation of pullulan - A comprehensive review. Int J Biol Macromol 2022; 208:553-564. [PMID: 35354070 DOI: 10.1016/j.ijbiomac.2022.03.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
Pullulan is a microbial polymer, commercially produced from Aureobasidium pullulans. Downstream processing of pullulan involves a multi-stage process which should be efficient, safe and reproducible. In liquid-liquid separations, firstly cell free extract is separated. Cell biomass can be separated after fermentation either by centrifugation or filtration. Due to practically insolubility of pullulan in organic solvents, ethanol and isopropanol are the most commonly used organic solvents for its recovery. Pullulan can also be purified by chromatographic techniques, but these are not cost effective for the purification of pullulan. Efficient aqueous two-phase system can be used for the purification of pullulan. The current review describes the methods and perspectives used for solid-liquid separation, liquid-liquid separations and finishing steps for the recovery of pullulan. Techniques used to determine the structural attributes of pullulan have also been highlighted.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrates and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Navpreet Kaur
- Carbohydrates and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences, Punjabi University, Patiala 147 002, Punjab, India
| | - Bijender K Bajaj
- School of Biotechnology, University of Jammu, Jammu 180 006, India
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8SG Tenbury Wells, United Kingdom
| |
Collapse
|
7
|
The signaling pathways involved in metabolic regulation and stress responses of the yeast-like fungi Aureobasidium spp. Biotechnol Adv 2021; 55:107898. [PMID: 34974157 DOI: 10.1016/j.biotechadv.2021.107898] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022]
Abstract
Aureobasidium spp. can use a wide range of substrates and are widely distributed in different environments, suggesting that they can sense and response to various extracellular signals and be adapted to different environments. It is true that their pullulan, lipid and liamocin biosynthesis and cell growth are regulated by the cAMP-PKA signaling pathway; Polymalate (PMA) and pullulan biosynthesis is controlled by the Ca2+ and TORC1 signaling pathways; the HOG1 signaling pathway determines high osmotic tolerance and high pullulan and liamocin biosynthesis; the Snf1/Mig1 pathway controls glucose repression on pullulan and liamocin biosynthesis; DHN-melanin biosynthesis and stress resistance are regulated by the CWI signaling pathway and TORC1 signaling pathway. In addition, the HSF1 pathway may control cell growth of some novel strains of A. melanogenum at 37 °C. However, the detailed molecular mechanisms of high temperature growth and thermotolerance of some novel strains of A. melanogenum and glucose derepression in A. melanogenum TN3-1 are still unclear.
Collapse
|
8
|
Rai M, Wypij M, Ingle AP, Trzcińska-Wencel J, Golińska P. Emerging Trends in Pullulan-Based Antimicrobial Systems for Various Applications. Int J Mol Sci 2021; 22:13596. [PMID: 34948392 PMCID: PMC8704206 DOI: 10.3390/ijms222413596] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/21/2023] Open
Abstract
Global reports on multidrug resistance (MDR) and life-threatening pathogens such as SARS-CoV-2 and Candida cruris have stimulated researchers to explore new antimicrobials that are eco-friendly and economically viable. In this context, biodegradable polymers such as nisin, chitin, and pullulan play an important role in solving the problem. Pullulan is an important edible, biocompatible, water-soluble polymer secreted by Aureobasidium pullulans that occurs ubiquitously. It consists of maltotriose units linked with α-1,6 glycosidic bonds and is classed as Generally Regarded as Safe (GRAS) by the Food and Drug Administration (FDA) in the USA. Pullulan is known for its antibacterial, antifungal, antiviral, and antitumor activities when incorporated with other additives such as antibiotics, drugs, nanoparticles, and so on. Considering the importance of its antimicrobial activities, this polymer can be used as a potential antimicrobial agent against various pathogenic microorganisms including the multidrug-resistant (MDR) pathogens. Moreover, pullulan has ability to synthesize biogenic silver nanoparticles (AgNPs), which are remarkably efficacious against pathogenic microbes. The pullulan-based nanocomposites can be applied for wound healing, food packaging, and also enhancing the shelf-life of fruits and vegetables. In this review, we have discussed biosynthesis of pullulan and its role as antibacterial, antiviral, and antifungal agent. Pullulan-based films impregnated with different antimicrobials such as AgNPs, chitosan, essential oils, and so on, forming nanocomposites have also been discussed as natural alternatives to combat the problems posed by pathogens.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.W.); (J.T.-W.)
| | - Magdalena Wypij
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.W.); (J.T.-W.)
| | - Avinash P. Ingle
- Biotechnology Centre, Department of Agricultural Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola 444104, Maharashtra, India;
| | - Joanna Trzcińska-Wencel
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.W.); (J.T.-W.)
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.W.); (J.T.-W.)
| |
Collapse
|
9
|
Advances in pullulan production from agro-based wastes by Aureobasidium pullulans and its applications. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Luft L, Confortin TC, Todero I, Brun T, Ugalde GA, Zabot GL, Mazutti MA. Production of bioemulsifying compounds from Phoma dimorpha using agroindustrial residues as additional carbon sources. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Pullulan biosynthesis and its regulation in Aureobasidium spp. Carbohydr Polym 2021; 251:117076. [DOI: 10.1016/j.carbpol.2020.117076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
|
12
|
Selvasekaran P, Mahalakshmi, Roshini F, Angalene LA, Chandini, Sunil T, Chidambaram R. Fungal Exopolysaccharides: Production and Biotechnological Industrial Applications in Food and Allied Sectors. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Liu G, Zhao X, Chen C, Chi Z, Zhang Y, Cui Q, Chi Z, Liu YJ. Robust production of pigment-free pullulan from lignocellulosic hydrolysate by a new fungus co-utilizing glucose and xylose. Carbohydr Polym 2020; 241:116400. [DOI: 10.1016/j.carbpol.2020.116400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 02/02/2023]
|
14
|
Fierascu RC, Fierascu I, Avramescu SM, Sieniawska E. Recovery of Natural Antioxidants from Agro-Industrial Side Streams through Advanced Extraction Techniques. Molecules 2019; 24:E4212. [PMID: 31757027 PMCID: PMC6930540 DOI: 10.3390/molecules24234212] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/18/2023] Open
Abstract
Large amounts of agro-industrial waste are being generated each year, leading to pollution and economic loss. At the same time, these side streams are rich source of active compounds including antioxidants. Recovered compounds can be re-utilized as food additives, functional foods, nutra-/pharmaceuticals, cosmeceuticals, beauty products, and bio-packaging. Advanced extraction techniques are promising tools to recover target compounds such as antioxidants from agro-industrial side streams. Due to the disadvantages of classical extraction techniques (such as large amounts of solvents, increased time of extraction, large amounts of remaining waste after the extraction procedure, etc.), and advanced techniques emerged, in order to obtain more efficient and sustainable processes. In this review paper aspects regarding different modern extraction techniques related to recovery of antioxidant compounds from wastes generated in different industries and their applications are briefly discussed.
Collapse
Affiliation(s)
- Radu Claudiu Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- National Institute for Research & Development in Chemistry and Petrochemistry – ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Irina Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- National Institute for Research & Development in Chemistry and Petrochemistry – ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Sorin Marius Avramescu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- Research Center for Environmental Protection and Waste Management, University of Bucharest, 36-46 Mihail Kogalniceanu Blvd., 050107 Bucharest, Romania
| | - Elwira Sieniawska
- Department of Pharmacognosy, Medical University of Lublin, 1 Chodzki, 20-093 Lublin, Poland
| |
Collapse
|
15
|
Pullulan production from agro-industrial waste and its applications in food industry: A review. Carbohydr Polym 2019; 217:46-57. [DOI: 10.1016/j.carbpol.2019.04.050] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 04/11/2019] [Indexed: 01/09/2023]
|
16
|
Gunasekaran V, Ramesh S, Sathiasivan K, Shankar M, Rajesh M, Tamilarasan K. Simultaneous organosolv pretreatment and detoxification of agro-biomass for efficient lignin extraction and characterization. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00876-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Singh RS, Kaur N. Understanding response surface optimization of medium composition for pullulan production from de-oiled rice bran by Aureobasidium pullulans. Food Sci Biotechnol 2019; 28:1507-1520. [PMID: 31695950 DOI: 10.1007/s10068-019-00585-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Central composite rotatable design of RSM was used for the optimization of medium composition for pullulan production from de-oiled rice bran by Aureobasidium pullulans in shake-flask fermentations. The sugars from de-oiled rice bran were extracted in distilled water under moist steam pressure and the obtained de-oiled rice bran extract (DRBE) was used for the optimization of medium composition. RSM optimized medium components (DRBE sugars, 3.88%; yeast extract, 0.24%; (NH4)2SO4, 0.06%; K2HPO4, 0.57% (w/v), and pH, 5.22) supported 5.48% (w/v) pullulan production and 0.88 (A600/100) biomass yield. Coefficient of determination for pullulan production (0.99) and biomass yield (0.99) was close to 1.0 which justifies significance of model. Lack of fit for both responses was non-significant, which shows fitness of quadratic model. FTIR and NMR spectral attributes confirmed the structure of pullulan. XRD patterns verified the amorphous nature of pullulan. De-oiled rice bran was found as a potential substrate for pullulan production.
Collapse
Affiliation(s)
- R S Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002 India
| | - Navpreet Kaur
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002 India
| |
Collapse
|
18
|
Elango RK, Sathiasivan K, Muthukumaran C, Thangavelu V, Rajesh M, Tamilarasan K. Transesterification of castor oil for biodiesel production: Process optimization and characterization. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Kumar N, Vijayshankar S, Pasupathi P, Nirmal Kumar S, Elangovan P, Rajesh M, Tamilarasan K. Optimal extraction, sequential fractionation and structural characterization of soda lignin. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3430-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
K.R. S, V. P. Review on production, downstream processing and characterization of microbial pullulan. Carbohydr Polym 2017; 173:573-591. [DOI: 10.1016/j.carbpol.2017.06.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/20/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
|
21
|
Felicia Katherine R, Muthukumaran C, Sharmila G, Manoj Kumar N, Tamilarasan K, Jaiganesh R. Xanthan gum production using jackfruit-seed-powder-based medium: optimization and characterization. 3 Biotech 2017; 7:248. [PMID: 28711983 DOI: 10.1007/s13205-017-0876-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/09/2017] [Indexed: 11/26/2022] Open
Abstract
Xanthan gum (XG) production by Xanthomonas campestris NCIM 2961 using jackfruit seed powder (JSP) as a novel substrate was reported. Central composite design (CCD) of response surface method (RSM) was used to evaluate the linear and interaction effects of five medium variables (JSP, peptone, citric acid, K2HPO4 and KH2PO4) for XG production. Maximum XG production (51.62 g/L) was observed at the optimum level of JSP (4 g/L), peptone (0.93 g/L), citric acid (0.26 g/L), K2HPO4 (1.29 g/L) and KH2PO4 (0.5 g/L). K2HPO4 and KH2PO4 were found as significant medium components, which served as buffering agents as well as nutrients for X. campestris growth. The obtained biopolymer was characterized as XG by XRD and FTIR analysis. Results of this study revealed that JSP was found to be a suitable low cost substrate for XG production.
Collapse
Affiliation(s)
- R Felicia Katherine
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Chennai, 603 203, India
| | - C Muthukumaran
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641 013, India.
| | - G Sharmila
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641 013, India
| | - N Manoj Kumar
- Department of Genetic Engineering, School of Bioengineering, SRM University, Kattankulathur, Chennai, 603 203, India
| | - K Tamilarasan
- Department of Chemical Engineering, School of Bioengineering, SRM University, Kattankulathur, Chennai, 603 203, India
| | - R Jaiganesh
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Chennai, 603 203, India
| |
Collapse
|
22
|
Muthukumaran C, Banupriya L, Harinee S, Sivaranjani S, Sharmila G, Rajasekar V, Kumar NM. Pectin from muskmelon (Cucumis melo var. reticulatus) peels: extraction optimization and physicochemical properties. 3 Biotech 2017; 7:66. [PMID: 28452020 DOI: 10.1007/s13205-017-0655-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/13/2017] [Indexed: 11/26/2022] Open
Abstract
Pectin derived from plant waste sources is currently focused as an economical and eco-friendly approach. Optimization of pectin extraction from muskmelon peel by response surface methodology (RSM) was investigated in this study. Box-Behnken Design (BBD) was used to identify the optimal level of the extraction variables such as time, pH and temperature. A second-order model equation for pectin extraction was obtained from multiple regression analysis of experimental data with the correlation coefficient (R 2) value of 0.92. ANOVA results showed that linear effect of temperature and combined effect of pH with temperature were found significant for pectin extraction from muskmelon peel. Validation results had good agreement with the predicted results. Pectin extracted from muskmelon peel was classed as high methoxy pectin with the equivalent weight of 384.5 g/mol. Non-newtonian pseudoplastic flow behaviour was observed for muskmelon pectin from the viscosity studies.
Collapse
Affiliation(s)
- Chandrasekaran Muthukumaran
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore, Tamilnadu, 641 013, India.
| | - Loganathan Banupriya
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore, Tamilnadu, 641 013, India
| | - Somasundharam Harinee
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore, Tamilnadu, 641 013, India
| | - Sivagurunathan Sivaranjani
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore, Tamilnadu, 641 013, India
| | - Govindasamy Sharmila
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore, Tamilnadu, 641 013, India
| | - Vinayagam Rajasekar
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore, Tamilnadu, 641 013, India
| | - Narasimhan Manoj Kumar
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamilnadu, 603 203, India
| |
Collapse
|
23
|
Ruiz SP, Martinez CO, Noce AS, Sampaio AR, Baesso ML, Matioli G. Biosynthesis of succinoglycan by Agrobacterium radiobacter NBRC 12665 immobilized on loofa sponge and cultivated in sugar cane molasses. Structural and rheological characterization of biopolymer. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Padmanaban S, Balaji N, Muthukumaran C, Tamilarasan K. Statistical optimization of process parameters for exopolysaccharide production by Aureobasidium pullulans using sweet potato based medium. 3 Biotech 2015; 5:1067-1073. [PMID: 28324414 PMCID: PMC4624145 DOI: 10.1007/s13205-015-0308-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 05/12/2015] [Indexed: 11/06/2022] Open
Abstract
Statistical experimental designs were applied to optimize the fermentation medium for exopolysaccharide (EPS) production. Plackett–Burman design was applied to identify the significance of seven medium variables, in which sweet potato and yeast extract were found to be the significant variables for EPS production. Central composite design was applied to evaluate the optimum condition of the selected variables. Maximum EPS production of 9.3 g/L was obtained with the predicted optimal level of sweet potato 10 %, yeast extract 0.75 %, 5.5 pH, and time 100 h. The determined (R2) value was 0.97, indicating a good fitted model for EPS production. Results of this study showed that sweet potato can be utilized as a low-cost effective substrate for pullulan production in submerged fermentation.
Collapse
|