1
|
Paulo AJ, Wanderley MCDA, de Oliveira RJV, Vieira WADS, Alves LC, Viana Marques DDA, Converti A, Porto ALF. Production and partial purification by PEG/citrate ATPS of a β-galactosidase from the new promising isolate Cladosporium tenuissimum URM 7803. Prep Biochem Biotechnol 2020; 51:289-299. [PMID: 32907464 DOI: 10.1080/10826068.2020.1815054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
β-Galactosidase production, partial purification and characterization by a new fungal were investigated. Partial purification was performed by aqueous two-phase system (ATPS) using polyethylene glycol (PEG) molar mass, PEG concentration, citrate concentration and pH as the independent variables. Purification factor (PF), partition coefficient (K) and yield (Y) were the responses. After identification by rDNA sequencing and classification as Cladosporium tenuissimum URM 7803, this isolate achieved a maximum cell concentration and β-galactosidase activity of 0.48 g/L and 462.1 U/mL, respectively. β-Galactosidase partitioned preferentially for bottom salt-rich phase likely due to hydrophobicity and volume exclusion effect caused in the top phase by the high PEG concentration and molar mass. The highest value of PF (12.94) was obtained using 24% (w/w) PEG 8000 g/mol and 15% (w/w) citrate, while that of Y (79.76%) using 20% (w/w) PEG 400 g/mol and 25% (w/w) citrate, both at pH 6. The enzyme exhibited optimum temperature in crude and ATPS extracts in the ranges 35-50 °C and 40-55 °C, respectively, and optimum pH in the range 3.0-4.5, with a fall of enzyme activity under alkaline conditions. Some metal ions and detergents inhibited, while others stimulated enzyme activity. Finally, C. tenuissimum URM 7803 β-galactosidase showed a profile suitable for prebiotics production.
Collapse
Affiliation(s)
- Anderson José Paulo
- Campus Tefé, Federal Institute of Education, Science and Technology of Amazon (IFAM), Tefé, Brazil
| | | | | | | | - Luiz Carlos Alves
- Institute Aggeu Magalhães-IAM/FIOCRUZ, Federal University of Pernambuco, Recife, Brazil
| | - Daniela de Araújo Viana Marques
- Laboratory of Biotechnology Applied to Infectious and Parasitic Diseases, Biological Science Institute, University of Pernambuco-ICB/UPE, Santo Amaro, Recife, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Genoa, Italy
| | | |
Collapse
|
2
|
Peña-Jurado E, Pérez-Vega S, Zavala-Díaz de la Serna FJ, Pérez-Reyes I, Gutiérrez-Méndez N, Vazquez-Castillo J, Salmerón I. Production of poly (3-hydroxybutyrate) from a dairy industry wastewater using Bacillus subtilis EPAH18: Bioprocess development and simulation. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107324] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Elsayed EA, Danial EN, Wadaan MA, El-Enshasy HA. Production of β-galactosidase in shake-flask and stirred tank bioreactor cultivations by a newly isolated Bacillus licheniformis strain. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
da Fonseca FSA, Angolini CFF, Arruda MAZ, Junior CAL, Santos CA, Saraiva AM, Pilau E, Souza AP, Laborda PR, de Oliveira PFL, de Oliveira VM, Reis FDAM, Marsaioli AJ. Identification of oxidoreductases from the petroleum Bacillus safensis strain. ACTA ACUST UNITED AC 2015; 8:152-159. [PMID: 28352585 PMCID: PMC4980753 DOI: 10.1016/j.btre.2015.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/25/2015] [Accepted: 09/02/2015] [Indexed: 10/31/2022]
Abstract
A gram-positive bacterium, denominated CFA-06, was isolated from Brazilian petroleum in the Campos Basin and is responsible for the degradation of aromatic compounds and petroleum aromatic fractions. The CFA-06 strain was identified as Bacillus safensis using the 16S rRNA and gyrase B sequence. Enzymatic assays revealed the presence of two oxidoreductases: a catalase and a new oxidoreductase. The oxidoreductases were enzymatically digested and analyzed via ESI-LTQ-Orbitrap mass spectrometry. The mass data revealed a novel oxidoreductase (named BsPMO) containing 224 amino acids and 89% homology with a hypothetic protein from B. safensis (CFA-06) and a catalase (named BsCat) with 491 amino acids and 60% similarity with the catalase from Bacillus pumilus (SAFR-032). The new protein BsPMO contains iron atom(s) and shows catalytic activity toward a monooxygenase fluorogenic probe in the presence of cofactors (NADH, NADPH and NAD). This study enhances our knowledge of the biodegradation process of petroleum by B. safensis.
Collapse
Affiliation(s)
- Francine S A da Fonseca
- Chemistry Institute, University of Campinas, P.B 6154, 13083-970 Campinas, São Paulo, Brazil; Institute of Agricultural Sciences, Federal University of Minas Gerais, 39404-547 Minas Gerais, Brazil
| | - Célio F F Angolini
- Chemistry Institute, University of Campinas, P.B 6154, 13083-970 Campinas, São Paulo, Brazil
| | - Marco A Zezzi Arruda
- Chemistry Institute, University of Campinas, P.B 6154, 13083-970 Campinas, São Paulo, Brazil
| | - Cícero A L Junior
- Chemistry Institute, University of Campinas, P.B 6154, 13083-970 Campinas, São Paulo, Brazil
| | - Clelton A Santos
- Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875 São Paulo, Brazil
| | - Antonio M Saraiva
- Chemistry Institute, University of Campinas, P.B 6154, 13083-970 Campinas, São Paulo, Brazil; National Institute of Metrology, Quality and Technology - INMETRO, Xerém, Rio de Janeiro, Brazil
| | - Eduardo Pilau
- Chemistry Institute, University of Campinas, P.B 6154, 13083-970 Campinas, São Paulo, Brazil
| | - Anete P Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875 São Paulo, Brazil
| | - Prianda R Laborda
- Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875 São Paulo, Brazil
| | - Patrícia F L de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, CP 6171, CEP 13081-970, Campinas, SP, Brazil
| | - Valéria M de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, CP 6171, CEP 13081-970, Campinas, SP, Brazil
| | | | - Anita J Marsaioli
- Chemistry Institute, University of Campinas, P.B 6154, 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|