1
|
Maquia IS, Fareleira P, Videira e Castro I, Brito DRA, Soares R, Chaúque A, Ferreira-Pinto MM, Lumini E, Berruti A, Ribeiro NS, Marques I, Ribeiro-Barros AI. Mining the Microbiome of Key Species from African Savanna Woodlands: Potential for Soil Health Improvement and Plant Growth Promotion. Microorganisms 2020; 8:E1291. [PMID: 32846974 PMCID: PMC7563409 DOI: 10.3390/microorganisms8091291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 01/19/2023] Open
Abstract
(1) Aims: Assessing bacterial diversity and plant-growth-promoting functions in the rhizosphere of the native African trees Colophospermum mopane and Combretum apiculatum in three landscapes of the Limpopo National Park (Mozambique), subjected to two fire regimes. (2) Methods: Bacterial communities were identified through Illumina Miseq sequencing of the 16S rRNA gene amplicons, followed by culture dependent methods to isolate plant growth-promoting bacteria (PGPB). Plant growth-promoting traits of the cultivable bacterial fraction were further analyzed. To screen for the presence of nitrogen-fixing bacteria, the promiscuous tropical legume Vigna unguiculata was used as a trap host. The taxonomy of all purified isolates was genetically verified by 16S rRNA gene Sanger sequencing. (3) Results: Bacterial community results indicated that fire did not drive major changes in bacterial abundance. However, culture-dependent methods allowed the differentiation of bacterial communities between the sampled sites, which were particularly enriched in Proteobacteria with a wide range of plant-beneficial traits, such as plant protection, plant nutrition, and plant growth. Bradyrhizobium was the most frequent symbiotic bacteria trapped in cowpea nodules coexisting with other endophytic bacteria. (4) Conclusion: Although the global analysis did not show significant differences between landscapes or sites with different fire regimes, probably due to the fast recovery of bacterial communities, the isolation of PGPB suggests that the rhizosphere bacteria are driven by the plant species, soil type, and fire regime, and are potentially associated with a wide range of agricultural, environmental, and industrial applications. Thus, the rhizosphere of African savannah ecosystems seems to be an untapped source of bacterial species and strains that should be further exploited for bio-based solutions.
Collapse
Affiliation(s)
- Ivete Sandra Maquia
- Plant Stress & Biodiversity Lab—Forest Research Center (CEF), School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal; (I.S.M.); (M.M.F.-P.)
- TropiKMan Doctoral Program, Nova School of Business & Economics (Nova SBE), 2775-405 Carcavelos, Portugal
- Biotechnology Center, Eduardo Mondlane University, CP 257 Maputo, Mozambique;
| | - Paula Fareleira
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), 2780-159 Oeiras, Portugal; (P.F.); (I.V.eC.); (R.S.)
| | - Isabel Videira e Castro
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), 2780-159 Oeiras, Portugal; (P.F.); (I.V.eC.); (R.S.)
| | - Denise R. A. Brito
- Biotechnology Center, Eduardo Mondlane University, CP 257 Maputo, Mozambique;
| | - Ricardo Soares
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), 2780-159 Oeiras, Portugal; (P.F.); (I.V.eC.); (R.S.)
| | - Aniceto Chaúque
- Faculty of Agronomy and Forest Engineering, Eduardo Mondlane University, CP 257 Maputo, Mozambique; (A.C.); (N.S.R.)
| | - M. Manuela Ferreira-Pinto
- Plant Stress & Biodiversity Lab—Forest Research Center (CEF), School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal; (I.S.M.); (M.M.F.-P.)
| | - Erica Lumini
- Institute for Sustainable Plant Protection, National Research Council, I-10135 Turin, Italy; (E.L.); (A.B.)
| | - Andrea Berruti
- Institute for Sustainable Plant Protection, National Research Council, I-10135 Turin, Italy; (E.L.); (A.B.)
| | - Natasha S. Ribeiro
- Faculty of Agronomy and Forest Engineering, Eduardo Mondlane University, CP 257 Maputo, Mozambique; (A.C.); (N.S.R.)
| | - Isabel Marques
- Plant Stress & Biodiversity Lab—Forest Research Center (CEF), School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal; (I.S.M.); (M.M.F.-P.)
| | - Ana I. Ribeiro-Barros
- Plant Stress & Biodiversity Lab—Forest Research Center (CEF), School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal; (I.S.M.); (M.M.F.-P.)
| |
Collapse
|
2
|
Asymmetric synthesis of α-bromohydrins by carrot root as biocatalyst and conversion to enantiopure β-hydroxytriazoles and styrene oxides using click chemistry and SN2 ring-closure. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-018-1535-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|