1
|
Takatani N, Maoka T, Sawabe T, Beppu F, Hosokawa M. Identification of a novel monocyclic carotenoid and prediction of its biosynthetic genes in Algoriphagus sp. oki45. Appl Microbiol Biotechnol 2024; 108:102. [PMID: 38212961 PMCID: PMC10784355 DOI: 10.1007/s00253-023-12995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024]
Abstract
Bacteria belonging to the genus Algoriphagus have been isolated from various sources, such as Antarctic sea ice, seawater, and sediment, and some strains are known to produce orange to red pigments. However, the pigment composition and biosynthetic genes have not been fully elucidated. A new red-pigmented Algoriphagus sp. strain, oki45, was isolated from the surface of seaweed collected from Senaga-Jima Island, Okinawa, Japan. Genome comparison revealed oki45's average nucleotide identity of less than 95% to its closely related species, Algoriphagus confluentis NBRC 111222 T and Algoriphagus taiwanensis JCM 19755 T. Comprehensive chemical analyses of oki45's pigments, including 1H and 13C nuclear magnetic resonance and circular dichroism spectroscopy, revealed that the pigments were mixtures of monocyclic carotenoids, (3S)-flexixanthin ((3S)-3,1'-dihydroxy-3',4'-didehydro-1',2'-dihydro-β,ψ-caroten-4-one) and (2R,3S)-2-hydroxyflexixanthin ((2R,3S)-2,3,1'-trihydroxy-3',4'-didehydro-1',2'-dihydro-β,ψ-caroten-4-one); in particular, the latter compound was new and not previously reported. Both monocyclic carotenoids were also found in A. confluentis NBRC 111222 T and A. taiwanensis JCM 19755 T. Further genome comparisons of carotenoid biosynthetic genes revealed the presence of eight genes (crtE, crtB, crtI, cruF, crtD, crtYcd, crtW, and crtZ) for flexixanthin biosynthesis. In addition, a crtG homolog gene encoding 2,2'-β-hydroxylase was found in the genome of the strains oki45, A. confluentis NBRC 111222 T, and A. taiwanensis JCM 19755 T, suggesting that the gene is involved in 2-hydroxyflexixanthin synthesis via 2-hydroxylation of flexixanthin. These findings expand our knowledge of monocyclic carotenoid biosynthesis in Algoriphagus bacteria. KEY POINTS: • Algoriphagus sp. strain oki45 was isolated from seaweed collected in Okinawa, Japan. • A novel monocyclic carotenoid 2-hydroxyflexixanthin was identified from strain oki45. • Nine genes for 2-hydroxyflexixanthin biosynthesis were found in strain oki45 genome.
Collapse
Affiliation(s)
- Naoki Takatani
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo-Morimoto-Cho, Sakyo-Ku, Kyoto, 606-0805, Japan
| | - Tomoo Sawabe
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Fumiaki Beppu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Masashi Hosokawa
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan.
| |
Collapse
|
2
|
Silva TRE, Silva LCF, de Queiroz AC, Alexandre Moreira MS, de Carvalho Fraga CA, de Menezes GCA, Rosa LH, Bicas J, de Oliveira VM, Duarte AWF. Pigments from Antarctic bacteria and their biotechnological applications. Crit Rev Biotechnol 2021; 41:809-826. [PMID: 33622142 DOI: 10.1080/07388551.2021.1888068] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pigments from microorganisms have triggered great interest in the market, mostly by their "natural" appeal, their favorable production conditions, in addition to the potential new chemical structures or naturally overproducing strains. They have been used in: food, feed, dairy, textile, pharmaceutical, and cosmetic industries. The high rate of pigment production in microorganisms recovered from Antarctica in response to selective pressures such as: high UV radiation, low temperatures, and freezing and thawing cycles makes this a unique biome which means that much of its biological heritage cannot be found elsewhere on the planet. This vast arsenal of pigmented molecules has different functions in bacteria and may exhibit different biotechnological activities, such as: extracellular sunscreens, photoprotective function, antimicrobial activity, biodegradability, etc. However, many challenges for the commercial use of these compounds have yet to be overcome, such as: the low stability of natural pigments in cosmetic formulations, the change in color when subjected to pH variations, the low yield and the high costs in their production. This review surveys the different types of natural pigments found in Antarctic bacteria, classifying them according to their chemical structure. Finally, we give an overview of the main pigments that are used commercially today.
Collapse
Affiliation(s)
- Tiago Rodrigues E Silva
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrárias, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | | | | | | | | | | | - Luiz Henrique Rosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliano Bicas
- Departamento de Ciência de Alimentos, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | - Valéria Maia de Oliveira
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrárias, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | | |
Collapse
|
3
|
Meléndez-Martínez AJ, Mandić AI, Bantis F, Böhm V, Borge GIA, Brnčić M, Bysted A, Cano MP, Dias MG, Elgersma A, Fikselová M, García-Alonso J, Giuffrida D, Gonçalves VSS, Hornero-Méndez D, Kljak K, Lavelli V, Manganaris GA, Mapelli-Brahm P, Marounek M, Olmedilla-Alonso B, Periago-Castón MJ, Pintea A, Sheehan JJ, Tumbas Šaponjac V, Valšíková-Frey M, Meulebroek LV, O'Brien N. A comprehensive review on carotenoids in foods and feeds: status quo, applications, patents, and research needs. Crit Rev Food Sci Nutr 2021; 62:1999-2049. [PMID: 33399015 DOI: 10.1080/10408398.2020.1867959] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carotenoids are isoprenoids widely distributed in foods that have been always part of the diet of humans. Unlike the other so-called food bioactives, some carotenoids can be converted into retinoids exhibiting vitamin A activity, which is essential for humans. Furthermore, they are much more versatile as they are relevant in foods not only as sources of vitamin A, but also as natural pigments, antioxidants, and health-promoting compounds. Lately, they are also attracting interest in the context of nutricosmetics, as they have been shown to provide cosmetic benefits when ingested in appropriate amounts. In this work, resulting from the collaborative work of participants of the COST Action European network to advance carotenoid research and applications in agro-food and health (EUROCAROTEN, www.eurocaroten.eu, https://www.cost.eu/actions/CA15136/#tabs|Name:overview) research on carotenoids in foods and feeds is thoroughly reviewed covering aspects such as analysis, carotenoid food sources, carotenoid databases, effect of processing and storage conditions, new trends in carotenoid extraction, daily intakes, use as human, and feed additives are addressed. Furthermore, classical and recent patents regarding the obtaining and formulation of carotenoids for several purposes are pinpointed and briefly discussed. Lastly, emerging research lines as well as research needs are highlighted.
Collapse
Affiliation(s)
- Antonio J Meléndez-Martínez
- Nutrition and Food Science, Toxicology and Legal Medicine Department, Universidad de Sevilla, Sevilla, Spain
| | - Anamarija I Mandić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Filippos Bantis
- Department of Horticulture, Aristotle University, Thessaloniki, Greece
| | - Volker Böhm
- Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Grethe Iren A Borge
- Fisheries and Aquaculture Research, Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Mladen Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Anette Bysted
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - M Pilar Cano
- Institute of Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| | - M Graça Dias
- Instituto Nacional de Saúde Doutor Ricardo Jorge, I.P., Lisboa, Portugal
| | | | - Martina Fikselová
- Department of Food Hygiene and Safety, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | | | | | | | | | - Kristina Kljak
- Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Vera Lavelli
- DeFENS-Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - George A Manganaris
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Paula Mapelli-Brahm
- Institute of Food Technology in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | | | | | | | - Adela Pintea
- Chemistry and Biochemistry Department, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | | | | | | | - Lieven Van Meulebroek
- Department of Veterinary Public Health and Food Safety, Ghent University, Merelbeke, Belgium
| | - Nora O'Brien
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|