1
|
Silva AS, Neves KM, Freitas RF, das Chagas TP, Salay LC, da Silva EGP, Uetanabaro APT, da Costa AM. Valorization of Cocoa and Peach-Palm Wastes for the Production of Amylases by Pleurotus pulmonarius CCB19 and Its Application as an Additive in Commercial Detergents. Appl Biochem Biotechnol 2025; 197:3271-3294. [PMID: 39847246 DOI: 10.1007/s12010-024-05147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
In the context of agribusiness, the agricultural and livestock sectors generate a considerable quantity of waste on a daily basis. Solid-state fermentation (SSF) represents a potential alternative for mitigating the adverse effects of residue accumulation and for producing high-value products such as enzymes. Pleurotus pulmonarius is capable of producing a number of commercial enzymes, including amylases. Accordingly, the present study sought to produce, characterize, and apply amylases obtained from solid-state fermentation of cocoa and peach-palm waste by the fungus Pleurotus pulmonarius CCB19. The highest amylase production by P. pulmonarius was observed after 3 days of solid-state fermentation of the cocoa shells, with an activity of 83.90 U/gds. The physicochemical characterization of the crude amylase using the artificial neural network (ANN) revealed that the highest activity was observed at pH 9 and a temperature of 20 °C (120.7 U/gds). Furthermore, the amylase demonstrated stability in the majority of the tested conditions, maintaining up to 80% of its residual activity for up to 120 min of incubation. With regard to the impact of ions and reagents on enzymatic activity, a positive effect was observed in the presence of Co+ ions at concentrations of 1 and 5 mM, whereas Cu+ ions at 5 mM demonstrated an inhibitory effect. The addition of SDS and EDTA reagents did not affect the observed activity. Furthermore, the extract was tested in commercial detergent formulations and demonstrated enhanced compatibility (110%) and efficacy (270% with boiled detergent) in removing starch stains from fabrics with Ariel liquid detergent. In conclusion, amylase derived from the fungus Pleurotus pulmonarius CCB19 exhibited favorable properties that make it a suitable candidate for use as an additive in laundry detergent formulations.
Collapse
Affiliation(s)
- Alaiana Santos Silva
- Department of Biological Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil
| | - Karollaine Moura Neves
- Department of Biological Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil
| | - Rayssa Falcão Freitas
- Department of Exact Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16 Salobrinho, Ilhéus, BA, 45662-900, Brazil
| | - Thiago Pereira das Chagas
- Department of Engineering and Computing, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil
| | - Luiz Carlos Salay
- Department of Exact Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16 Salobrinho, Ilhéus, BA, 45662-900, Brazil
| | - Erik Galvão Paranhos da Silva
- Department of Exact Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16 Salobrinho, Ilhéus, BA, 45662-900, Brazil
| | - Ana Paula Trovatti Uetanabaro
- Department of Biological Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil
| | - Andréa Miura da Costa
- Department of Biological Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil.
| |
Collapse
|
2
|
Ren H, Wang T, Liu R. Correlation Analyses of Amylase and Protease Activities and Physicochemical Properties of Wheat Bran During Solid-State Fermentation. Foods 2024; 13:3998. [PMID: 39766945 PMCID: PMC11675429 DOI: 10.3390/foods13243998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Solid-state fermentation (SSF) has emerged as an effective method for wheat bran valorization, providing advantages like cost reduction, decreased water usage, and enhanced product quality. In this study, wheat bran was fermented using Rhizopus oryzae to evaluate the extraction yield of soluble dietary fiber, the activities of protease and amylase, and the physicochemical characteristics of wheat bran during SSF. The findings demonstrated that the maximum yield of soluble dietary fiber was achieved after 120 h of fermentation at a moisture content of 55%. Simultaneously, protease activity peaked at 45% moisture content after 120 h, while amylase activity was maximized at 55% moisture content after 96 h. The microstructure result indicated that most of the starch granules degraded after 144 h of fermentation at a moisture content of 55%, exhibiting a smooth outer layer of wheat bran. Furthermore, fermented bran showed a significant rise in total phenols, peaking at 96 h at a moisture content of 55%. Flavonoid content also reached its maximum after 72 h of fermentation at 55% moisture content. The content of alkylresorcinols in fermented wheat bran changed slightly under different moisture content and fermentation time conditions, which was consistent with the change in pH value. The DPPH radical scavenging rate was optimal when the moisture content was 55% after 96 h. The ABTS radical scavenging rate, hydroxyl radical scavenging rate, and reducing ability were optimal at 55% moisture content after 120 h. These findings demonstrate that the optimal conditions for the SSF of wheat bran using Rhizopus oryzae involve maintaining the moisture at 55%, suggesting that this method is effective for enhancing the value of wheat bran.
Collapse
Affiliation(s)
| | | | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (H.R.); (T.W.)
| |
Collapse
|
3
|
Herrmann LW, Letti LAJ, Penha RDO, Soccol VT, Rodrigues C, Soccol CR. Bacillus genus industrial applications and innovation: First steps towards a circular bioeconomy. Biotechnol Adv 2024; 70:108300. [PMID: 38101553 DOI: 10.1016/j.biotechadv.2023.108300] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
In recent decades, environmental concerns have directed several policies, investments, and production processes. The search for sustainable and eco-friendly strategies is constantly increasing to reduce petrochemical product utilization, fossil fuel pollution, waste generation, and other major ecological impacts. The concepts of circular economy, bioeconomy, and biorefinery are increasingly being applied to solve or reduce those problems, directing us towards a greener future. Within the biotechnology field, the Bacillus genus of bacteria presents extremely versatile microorganisms capable of producing a great variety of products with little to no dependency on petrochemicals. They are able to grow in different agro-industrial wastes and extreme conditions, resulting in healthy and environmentally friendly products, such as foods, feeds, probiotics, plant growth promoters, biocides, enzymes, and bioactive compounds. The objective of this review was to compile the variety of products that can be produced with Bacillus cells, using the concepts of biorefinery and circular economy as the scope to search for greener alternatives to each production method and providing market and bioeconomy ideas of global production. Although the genus is extensively used in industry, little information is available on its large-scale production, and there is little current data regarding bioeconomy and circular economy parameters for the bacteria. Therefore, as this work gathers several products' economic, production, and environmentally friendly use information, it can be addressed as one of the first steps towards those sustainable strategies. Additionally, an extensive patent search was conducted, focusing on products that contain or are produced by the Bacillus genus, providing an indication of global technology development and direction of the bacteria products. The Bacillus global market represented at least $18 billion in 2020, taking into account only the products addressed in this article, and at least 650 patent documents submitted per year since 2017, indicating this market's extreme importance. The data we provide in this article can be used as a base for further studies in bioeconomy and circular economy and show the genus is a promising candidate for a greener and more sustainable future.
Collapse
Affiliation(s)
- Leonardo Wedderhoff Herrmann
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil.
| | - Luiz Alberto Junior Letti
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| | - Rafaela de Oliveira Penha
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| | - Vanete Thomaz Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| | - Cristine Rodrigues
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| |
Collapse
|
4
|
Camargo AF, Bonatto C, Scapini T, Klanovicz N, Tadioto V, Cadamuro RD, Bazoti SF, Kubeneck S, Michelon W, Reichert Júnior FW, Mossi AJ, Alves Júnior SL, Fongaro G, Treichel H. Fungus-based bioherbicides on circular economy. Bioprocess Biosyst Eng 2023; 46:1729-1754. [PMID: 37743409 DOI: 10.1007/s00449-023-02926-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
This review aimed to show that bioherbicides are possible in organic agriculture as natural compounds from fungi and metabolites produced by them. It is discussed that new formulations must be developed to improve field stability and enable the commercialization of microbial herbicides. Due to these bottlenecks, it is crucial to advance the bioprocesses behind the formulation and fermentation of bio-based herbicides, scaling up, strategies for field application, and the potential of bioherbicides in the global market. In this sense, it proposed insights for modern agriculture based on sustainable development and circular economy, precisely the formulation, scale-up, and field application of microbial bioherbicides.
Collapse
Affiliation(s)
- Aline Frumi Camargo
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Charline Bonatto
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Thamarys Scapini
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Natalia Klanovicz
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, University of São Paulo, São Paulo, Brazil
| | - Viviani Tadioto
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rafael Dorighello Cadamuro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Suzana Fátima Bazoti
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Simone Kubeneck
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | | | | | - Altemir José Mossi
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | | | - Gislaine Fongaro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Helen Treichel
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil.
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil.
| |
Collapse
|
5
|
Gibberellic Acid Production from Corn Cob Residues via Fermentation with Aspergillus niger. J CHEM-NY 2022. [DOI: 10.1155/2022/1112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Following numerous biotechnological innovations, a variety of agricultural by-products can now be employed as low-cost substrates for the production of secondary metabolites, such as antibiotics, phytohormones, biofuels, pesticides, and organic acids. As an example, gibberellin (GA) growth phytohormones can be obtained by such means, wherein gibberellic acid (GA3) is of great interest worldwide in the agricultural sector. The central aspect of this research therefore focused on the bioconversion of agricultural by-products, such as corn cob, to obtain GA3 phytohormone via solid-state fermentation (SSF) with Aspergillus niger. The chemical characterization of the obtained material showed that the corn cob possessed glucose, mannose, arabinose, and lignin contents of 34, 26, 8, and 16%, respectively. Our results also indicated an appreciable carbon content (47%), in addition to the mineral elements of nitrogen (4%), potassium (1.2%), iron (0.03%), sodium (0.01%), calcium (0.06%), and Al (0.02%). Following SSF for 11 d in the presence of A. niger at pH 5, 30°C, and 24% sample consistency, a GA3 production of >6.1 g·kg−1 was obtained. This value is higher than those previously reported for different by-products of the food industry, such as coffee husk, wheat bran, cassava, pea pods, and sorghum straw (i.e., 0.25–5.5 g·kg−1) following SSF. The production of GA3 from corn cob residues not only contributes to reducing the negative impact of agricultural by-products but also represents a new source of a key raw material for phytohormone production, thereby contributing to the development of processes to convert agricultural residues into biologically active compounds of commercial interest.
Collapse
|
6
|
Lee SY, Ra CH. Comparison of Liquid and Solid-State Fermentation Processes for the Production of Enzymes and Beta-Glucan from Hulled Barley. J Microbiol Biotechnol 2022; 32:317-323. [PMID: 34949745 PMCID: PMC9628851 DOI: 10.4014/jmb.2111.11002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Solid-state fermentation using hulled barley was carried out to produce enzymes and β-glucan. The one-factor-at-a-time experiments were carried out to determine the optimal composition of the basal medium. The modified synthetic medium composition in liquid-state fermentation was determined to be 70 g/l hulled barley, 0 g/l rice bran, 5 g/l soytone, and 6 g/l ascorbic acid. Optimal pretreatment conditions of hulled barley by solid-state fermentation were evaluated in terms of maximum production of fungal biomass, amylase, protease, and β-glucan, which were 1.26 mg/g, 31310.34 U/g, 2614.95 U/g, and 14.6% (w/w), respectively, at 60 min of pretreatment condition. Thus, the solid-state fermentation process was found to enhance the overall fermentation yields of hulled barley to produce high amounts of enzymes and β-glucan.
Collapse
Affiliation(s)
- Se Yeon Lee
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si 17579, Republic of Korea
| | - Chae Hun Ra
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si 17579, Republic of Korea,Corresponding author Phone: +82-31-670-5157 Fax: +82-504-437-0217 E-mail:
| |
Collapse
|
7
|
Yang L, Zeng X, Qiao S. Advances in research on solid-state fermented feed and its utilization: The pioneer of private customization for intestinal microorganisms. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:905-916. [PMID: 34632121 PMCID: PMC8482288 DOI: 10.1016/j.aninu.2021.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022]
Abstract
With sustainable development of biotechnology, increasing attention has been placed on utilization of solid-state fermented feed (SFF). Solid-state fermented feed has been a candidate strategy to alleviate the contradiction between supply and demand of feed resources, ensure food hygiene safety, promoting energy conservation, and emission reduction. In production of SFF, a variety of organic acids, enzymes, vitamins, peptides, and other unknown growth factors are produced, which could affect performance of animals. Solid-state fermented feed produced by different fermentation techniques has great instability on different physiological stages of different animals, which hinders the application and standardized production of SFF. Herein, we summarize the current advances in the role of the characteristics of SFF prepared by different manufacturing technique and its research progress in animal experiments on growth performance, gastrointestinal ecology, and immune system, so as to provide references for further acquiring a relatively perfect set of SFF production and evaluation systems.
Collapse
Affiliation(s)
- Lijie Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing, China
- Beijing Biofeed Additives Key Laboratory, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing, China
- Beijing Biofeed Additives Key Laboratory, Beijing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing, China
- Beijing Biofeed Additives Key Laboratory, Beijing, China
| |
Collapse
|
8
|
Abstract
Proteases are ubiquitous enzymes, having significant physiological roles in both synthesis and degradation. The use of microbial proteases in food fermentation is an age-old process, which is today being successfully employed in other industries with the advent of ‘omics’ era and innovations in genetic and protein engineering approaches. Proteases have found application in industries besides food, like leather, textiles, detergent, waste management, agriculture, animal husbandry, cosmetics, and pharmaceutics. With the rising demands and applications, researchers are exploring various approaches to discover, redesign, or artificially synthesize enzymes with better applicability in the industrial processes. These enzymes offer a sustainable and environmentally safer option, besides possessing economic and commercial value. Various bacterial and fungal proteases are already holding a commercially pivotal role in the industry. The current review summarizes the characteristics and types of proteases, microbial source, their current and prospective applications in various industries, and future challenges. Promoting these biocatalysts will prove significant in betterment of the modern world.
Collapse
|
9
|
Ji SB, Ra CH. Coproduction of Enzymes and Beta-Glucan by Aspergillus oryzae Using Solid-State Fermentation of Brown Rice. J Microbiol Biotechnol 2021; 31:1028-1034. [PMID: 34099602 PMCID: PMC9705856 DOI: 10.4014/jmb.2105.05005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
The effect of medium composition on enzyme and β-glucan production by Aspergillus oryzae KCCM 12698 was investigated. Brown rice, rice bran, nitrogen, and ascorbic acid are key components of the synthetic medium used in liquid-state fermentation. To determine the optimal concentrations of these components for enzyme and β-glucan production, we conducted one factor at a time experiments, which showed that the optimal concentrations were 30 g/l brown rice, 30 g/l rice bran, 10 g/l soytone, and 3 g/l ascorbic acid. Pretreatment of brown rice for 60 min prior to inoculation enhanced fungal biomass, while increasing the production of enzymes and β-glucan using solidstate fermentation. Maximum fungal biomass of 0.76 mg/g, amylase (26,551.03 U/g), protease (1,340.50 U/g), and β-glucan at 9.34% (w/w) were obtained during fermentation. Therefore, solidstate fermentation of brown rice is a process that could enhance yield and overall production of enzymes and β-glucan for use in various applications.
Collapse
Affiliation(s)
- Su Bin Ji
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong 17579, Republic of Korea
| | - Chae Hun Ra
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong 17579, Republic of Korea,Corresponding author Phone: +82-31-670-5157 Fax: + 82-504-437-0217 E-mail:
| |
Collapse
|
10
|
Šelo G, Planinić M, Tišma M, Tomas S, Koceva Komlenić D, Bucić-Kojić A. A Comprehensive Review on Valorization of Agro-Food Industrial Residues by Solid-State Fermentation. Foods 2021; 10:foods10050927. [PMID: 33922545 PMCID: PMC8146281 DOI: 10.3390/foods10050927] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Agro-food industrial residues (AFIRs) are generated in large quantities all over the world. The vast majority of these wastes are lignocellulosic wastes that are a source of value-added products. Technologies such as solid-state fermentation (SSF) for bioconversion of lignocellulosic waste, based on the production of a wide range of bioproducts, offer both economic and environmental benefits. The versatility of application and interest in applying the principles of the circular bioeconomy make SSF one of the valorization strategies for AFIRs that can have a significant impact on the environment of the wider community. Important criteria for SSF are the selection of the appropriate and compatible substrate and microorganism, as well as the selection of the optimal process parameters for the growth of the microorganism and the production of the desired metabolites. This review provides an overview of the management of AFIRs by SSF: the current application, classification, and chemical composition of AFIRs; the catalytic function and potential application of enzymes produced by various microorganisms during SSF cultivation on AFIRs; the production of phenolic compounds by SSF; and a brief insight into the role of SSF treatment of AFIRs for feed improvement and biofuel production.
Collapse
|
11
|
Abstract
The asymmetric biraphid pennate diatom Amphora copulata, isolated from tropical coastal waters (South China Sea, Malaysia), was cultured for renewable production of lipids (oils) in a medium comprised of inorganic nutrients dissolved in dilute palm oil mill effluent (POME). Optimal levels of nitrate, phosphate, and silicate were identified for maximizing the biomass concentration in batch cultures conducted at 25 ± 2 °C under an irradiance of 130 µmol m−2 s−1 with a 16 h/8 h light-dark cycle. The maximum lipid content in the biomass harvested after 15-days was 39.5 ± 4.5% by dry weight in a POME-based medium with optimal levels of nitrate, phosphate, and silicate. Under the optimized conditions the maximum dry mass concentration of the diatom was 660 mg L−1 on day 12, declining to ~650 mg L−1 on day 15. For the 15-day batch operation, the final average productivities of the biomass and the lipids were 43.3 ± 4.5 mg L−1 d−1 and 17.1 ± 0.3 mg L−1 d−1, respectively. The fatty acids in the diatom lipids were found to be (%, w/w of total lipids): palmitoleic acid (39.8%), palmitic acid (31.9%), myristic acid (6.8%), oleic acid (4.7%), stearic acid (4.5%), arachidonic acid (3.9%), eicosapentaenoic acid (3.6%), linoleic acid (2.5%), tetracosanoic acid (1.7%), and linolenic acid (0.6%).
Collapse
|
12
|
Bacterial Diversity Analysis and Evaluation Proteins Hydrolysis During the Acid Whey and Fish Waste Fermentation. Microorganisms 2021; 9:microorganisms9010100. [PMID: 33406784 PMCID: PMC7824499 DOI: 10.3390/microorganisms9010100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022] Open
Abstract
The disposal of acid whey (Aw), a by-product from fermented products, is a problem for the dairy industry. The fishery industry faces a similar dilemma, disposing of nearly 50% of fish processed for human consumption. Economically feasible and science-based alternatives are needed to overcome this problem. One possible solution is to add value to the remaining nutrients from these by-products. This study focuses on the breakdown of nutrients in controlled fermentations of Aw, fish waste (F), molasses (M), and a lactic acid bacteria (LAB) strain (Lr). The aim was to assess the dynamic variations in microbial diversity and the biochemical changes that occur during fermentation. Four treatments were compared (AwF, AwFM, AwFLr, and AwFMLr), and the fermentation lasted 14 days at 22.5 °C. Samples were taken every other day. Colorimetric tests for peptide concentrations, pH, and microbial ecology by 16S-v4 rRNA amplicon using Illumina MiSeq were conducted. The results of the microbial ecology showed elevated levels of alpha and beta diversity in the samples at day zero. By day 2 of fermentation, pH dropped, and the availability of a different set of nutrients was reflected in the microbial diversity. The fermentation started to stabilize and was driven by the Firmicutes phylum, which dominated the microbial community by day 14. Moreover, there was a significant increase (3.6 times) in peptides when comparing day 0 with day 14, making this treatment practical and feasible for protein hydrolysis. This study valorizes two nutrient-dense by-products and provides an alternative to the current handling of these materials.
Collapse
|
13
|
Mishra S, Joghee NN, Jayaraman G. Virgibacillus dokdonensis VITP14 produces α-amylase and protease with broader operational range but with differential thermodynamic stability. Biotechnol Appl Biochem 2020; 69:92-100. [PMID: 33289126 DOI: 10.1002/bab.2084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/25/2020] [Indexed: 11/11/2022]
Abstract
Extracellular α-amylase and protease were coproduced from halotolerant Virgibacillus dokdonensis VITP14 with banana peels (2% w/v) as substrate. The pH optima for α-amylase and protease were 6.5 and 7.0 respectively. The temperature optima of α-amylase and protease were 30°C and 50°C respectively. Both the enzymes were active in the presence of various metal ions (1 mM of Ni2+, Ca2+, Ba2+, Sr2+ and Mg2+), detergents (Tween 20, Tween 80, Triton X-100) and other additives (2-mercaptoethanol and urea). Both the enzymes followed Michaelis-Menten type enzyme kinetics with Vmax of 121.40 μmol min-1 ml-1 and 4.17 μmol min-1 ml-1 and Km of 0.59 mg ml-1 and 0.28 mg ml-1 for amylase and protease respectively. Amylase showed higher activation energy for inactivation (75.55 kJ mol-1 compared to 59.70 kJ mol-1 for protease) and higher thermal stability (reflected by longer half-life 53.23 min compared to 0.11 min for protease) at 60°C. The coexistence of amylase and protease could be attributed to the difference in the optimum temperatures of activity and thermal stability of the two enzymes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Satabdi Mishra
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Nidhya Nadarajan Joghee
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Gurunathan Jayaraman
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| |
Collapse
|
14
|
Melnichuk N, Braia MJ, Anselmi PA, Meini MR, Romanini D. Valorization of two agroindustrial wastes to produce alpha-amylase enzyme from Aspergillus oryzae by solid-state fermentation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 106:155-161. [PMID: 32220823 DOI: 10.1016/j.wasman.2020.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
The global amount of soybean and wheat produced is about 350 and 750 million metric tons every year, respectively. In consequence, huge amounts of waste are produced from them. The aim of this work was to employ two wastes -soybean husk and flour mill waste- to produce high quantities of alpha-amylase enzyme. The substrate composition and the culture conditions were assayed to improve alpha-amylase production by solid-state fermentation employing the fungus Aspergillus oryzae. The maximum productivity of the enzyme was achieved using a culture substrate composed of the two wastes, at 45% soybean husk and 55% flour mill by-product, without pre-treatment, at an incubation temperature of 30 °C. The optimal incubation time (6 days), yielded a very high alpha-amylase activity (47,000 U/g dry substrate) at low-cost. The enzymatic extract obtained was characterized by LC-MS, providing a complete profile of the proteins produced during the solid-state fermentation on these two wastes. Then, the extract was purified in a single-step by size-exclusion chromatography and the recovery and the purification factor of alpha-amylase enzyme were about 83% and 6, respectively. The system was scaled up 50 times and yielded a similar enzymatic activity (45,900 U/g of dry substrate).
Collapse
Affiliation(s)
- Natasha Melnichuk
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina; Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - Mauricio J Braia
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina; Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - Pablo A Anselmi
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - María-Rocío Meini
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - Diana Romanini
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina; Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina.
| |
Collapse
|
15
|
Agricultural waste materials enhance protease production by Bacillus subtilis B22 in submerged fermentation under blue light-emitting diodes. Bioprocess Biosyst Eng 2020; 43:821-830. [DOI: 10.1007/s00449-019-02277-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/25/2019] [Indexed: 12/18/2022]
|
16
|
Hou X, Dai C, Tang Y, Xing Z, Mintah BK, Dabbour M, Ding Q, He R, Ma H. Thermophilic solid-state fermentation of rapeseed meal and analysis of microbial community diversity. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Gimenes NC, Silveira E, Tambourgi EB. An Overview of Proteases: Production, Downstream Processes and Industrial Applications. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1677249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Edgar Silveira
- Biotechnology Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
- Brazilian Savanna’s, Diversity Research Center, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | | |
Collapse
|
18
|
Pranay K, Padmadeo SR, Prasad B. Production of amylase from Bacillus subtilis sp. strain KR1 under solid state fermentation on different agrowastes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Abstract
Among organic acids, citric acid (CA) features the highest production volume and the greatest economic potential. The steadily increasing demand for CA necessitates the improvement and diversification of the corresponding production techniques via the incorporation of more environmentally friendly and less costly processes such as the bioconversion of agroindustrial by-products. Musa paradisiaca, known as plantain, is a food product of global importance; however, the related by-products are scarcely utilized. Herein, we investigate CA production from M. paradisiaca peels via fermentation with Aspergillus niger. Compositional analysis shows that the above peels contain 623 g·kg−1 total carbohydrates, 374 g·kg−1 starch, and 91 g·kg−1 protein and therefore are rather rich in carbon, with other elements contained in substantial amounts corresponding to K (28 g·kg−1), N (10 g·kg−1), Fe (39 mg·kg−1), Na (71 mg·kg−1), Zn (16 mg·kg−1), and Cu (18 mg·kg−1). Evaluation of solid-substrate fermentation conditions (pH and inoculum loading) reveals that CA production is maximized (29 g·kg−1) at 10% consistency, 30°C, pH 1.4, and inoculum loading = 20 mg, demonstrating that pH is the most important parameter determining fermentation efficiency. As a result, M. paradisiaca peels are concluded to be a suitable substrate for CA biosynthesis via fermentation with A. niger under optimal nutritional conditions.
Collapse
|
20
|
Shanmugavel M, Nivedha lakshmi J, Vasantharaj S, Anu C, Paul LE, Kumar RP, Gnanamani A. Wealth from waste: Recovery of the commercially important waxy ester from enzymatic dehaired sheep wool. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Steudler S, Werner A, Walther T. It Is the Mix that Matters: Substrate-Specific Enzyme Production from Filamentous Fungi and Bacteria Through Solid-State Fermentation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 169:51-81. [PMID: 30796505 DOI: 10.1007/10_2019_85] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fungi have a diverse spectrum of extracellular enzymes. In nature, extracellular enzymes primarily serve to procure nutrients for the survival and growth of the fungi. Complex polymers such as lignocellulose and starch as well as proteins and fats are broken down into their basic building blocks by extracellular enzymes such as amylases, proteases, lipases, xylanases, laccases, and many more.The abilities of these enzymes are made use of in diverse areas of industry, including food technology, textiles, and pharmaceuticals, and they have become indispensable for today's technology. Enzyme production is usually carried out using submerged fermentation (SmF). However, as part of the search for more sustainable uses of raw materials, solid-state fermentation (SSF) has become the focus of research.The rate of enzyme formation depends on different factors, for example, microorganism, temperature, or oxygen supply. However, one of the most important factors in enzyme production is the choice of substrate, which varies depending on the desired target enzyme. Substrates with proven effectiveness include wheat bran and straw, but unusual agricultural residues such as forage cactus pears and orange peels have surprisingly positive effects on enzyme formation as well.This review gives an overview of various technically relevant enzymes produced by filamentous fungi and suitable substrates for the production of the enzymes by SSF. Graphical Abstract.
Collapse
Affiliation(s)
- Susanne Steudler
- Institut für Naturstofftechnik, Professur für Bioverfahrenstechnik, Technische Universität Dresden, Dresden, Germany.
| | - Anett Werner
- Institut für Naturstofftechnik, Professur für Bioverfahrenstechnik, Technische Universität Dresden, Dresden, Germany
| | - Thomas Walther
- Institut für Naturstofftechnik, Professur für Bioverfahrenstechnik, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
22
|
Lahmar I, El Abed H, Khemakhem B, Belghith H, Ben Abdallah F, Belghith K. Optimization, Purification, and Starch Stain Wash Application of Two New α-Amylases Extracted from Leaves and Stems of Pergularia tomentosa. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6712742. [PMID: 29392138 PMCID: PMC5748145 DOI: 10.1155/2017/6712742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022]
Abstract
A continuous research is attempted to fulfil the highest industrial demands of natural amylases presenting special properties. New α-amylases extracted from stems and leaves of Pergularia tomentosa, which is widespread and growing spontaneously in Tunisia, were studied by the means of their activities optimization and purification. Some similarities were recorded for the two identified enzymes: (i) the highest amylase activity showed a promoted thermal stability at 50°C; (ii) the starch substrate at 1% enhanced the enzyme activity; (iii) the two α-amylases seem to be calcium-independent; (iv) Zn2+, Cu2+, and Ag2+ were considered as important inhibitors of the enzyme activity. Following the increased gradient of elution on Mono Q-Sepharose column, an increase in the specific activity of 11.82-fold and 10.92-fold was recorded, respectively, for leaves and stems with the presence of different peaks on the purification profiles. Pergularia amylases activities were stable and compatible with the tested commercial detergents. The combination of plant amylase and detergent allowed us to enhance the wash performance with an increase of 35.24 and 42.56%, respectively, for stems and leaves amylases. Characterized amylases were reported to have a promoted potential for their implication notably in detergent industry as well as biotechnological sector.
Collapse
Affiliation(s)
- Imen Lahmar
- Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Environment, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Hanen El Abed
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Bassem Khemakhem
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Hafedh Belghith
- Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology, Sfax, Tunisia
| | - Ferjani Ben Abdallah
- Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Environment, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Karima Belghith
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| |
Collapse
|
23
|
Qureshi AS, Khushk I, Naqvi SR, Simiar AA, Ali CH, Naqvi M, Danish M, Ahmed A, Majeed H, Mir Jatt AN, Rehan M, Nizami AS. Fruit Waste to Energy through Open Fermentation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.egypro.2017.12.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Webb C. Design Aspects of Solid State Fermentation as Applied to Microbial Bioprocessing. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/jabb.2017.04.00094] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Aarti C, Khusro A, Agastian P. Goat dung as a feedstock for hyper-production of amylase from Glutamicibacter arilaitensis strain ALA4. BIORESOUR BIOPROCESS 2017. [DOI: 10.1186/s40643-017-0174-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
26
|
Chen Z, Wan C. Non-sterile fermentations for the economical biochemical conversion of renewable feedstocks. Biotechnol Lett 2017; 39:1765-1777. [PMID: 28905262 DOI: 10.1007/s10529-017-2429-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/31/2017] [Indexed: 01/17/2023]
Abstract
Heavy reliance on petroleum-based products drives continuous exploitation of fossil fuels, and results in serious environmental and climate problems. To address such an issue, there is a shift from petroleum sources to renewable ones. Biochemical conversion via fermentation is a primary platform for converting renewable sources to biofuels and bulk chemicals. In order to provide cost-competitive alternatives, it is imperative to develop efficient, cost-saving, and robust fermentation processes. Non-sterile fermentation offers several benefits compared to sterile fermentation, including elimination of sterility, reduced maintenance requirements, relatively simple bioreactor design, and simplified operation. Thus, cost effectiveness of non-sterile fermentation makes it a practical platform for low cost, large volume production of biofuels and bulk chemicals. Many approaches have been developed to conduct non-sterile fermentation without sacrificing the yields and productivities of fermentation products. This review focuses on the strategies for conducting non-sterile fermentation. The challenges facing non-sterile fermentation are also discussed.
Collapse
Affiliation(s)
- Zhu Chen
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Caixia Wan
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
27
|
Contesini FJ, Melo RRD, Sato HH. An overview of Bacillus proteases: from production to application. Crit Rev Biotechnol 2017; 38:321-334. [DOI: 10.1080/07388551.2017.1354354] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fabiano Jares Contesini
- Laboratory of Food Biochemistry, Department of Food Science, College of Food Engineering, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ricardo Rodrigues de Melo
- Laboratory of Food Biochemistry, Department of Food Science, College of Food Engineering, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Hélia Harumi Sato
- Laboratory of Food Biochemistry, Department of Food Science, College of Food Engineering, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
28
|
Simair AA, Qureshi AS, Khushk I, Ali CH, Lashari S, Bhutto MA, Mangrio GS, Lu C. Production and Partial Characterization of α-Amylase Enzyme from Bacillus sp. BCC 01-50 and Potential Applications. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9173040. [PMID: 28168200 PMCID: PMC5267059 DOI: 10.1155/2017/9173040] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/26/2016] [Accepted: 12/18/2016] [Indexed: 11/20/2022]
Abstract
Amylase is an industrially important enzyme and applied in many industrial processes such as saccharification of starchy materials, food, pharmaceutical, detergent, and textile industries. This research work deals with the optimization of fermentation conditions for α-amylase production from thermophilic bacterial strain Bacillus sp. BCC 01-50 and characterization of crude amylase. The time profile of bacterial growth and amylase production was investigated in synthetic medium and maximum enzyme titer was observed after 60 h. In addition, effects of different carbon sources were tested as a substrate for amylase production and molasses was found to be the best. Various organic and inorganic compounds, potassium nitrate, ammonium chloride, sodium nitrate, urea, yeast extract, tryptone, beef extract, and peptone, were used and beef extract was found to be the best among the nitrogen sources used. Temperature, pH, agitation speed, and size of inoculum were also optimized. Highest enzyme activity was obtained when the strain was cultured in molasses medium for 60 h in shaking incubator (150 rpm) at 50°C and pH 8. Crude amylase showed maximal activity at pH 9 and 65°C. Enzyme remained stable in alkaline pH range 9-10 and 60-70°C. Crude amylase showed great potential for its application in detergent industry and saccharification of starchy materials.
Collapse
Affiliation(s)
- Altaf Ahmed Simair
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Abdul Sattar Qureshi
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro 76080, Pakistan
| | - Imrana Khushk
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro 76080, Pakistan
| | - Chaudhry Haider Ali
- Department of Chemical Engineering, University of Engineering & Technology, KSK Campus, Lahore 54890, Pakistan
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Safia Lashari
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro 76080, Pakistan
| | - Muhammad Aqeel Bhutto
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro 76080, Pakistan
| | - Ghulam Sughra Mangrio
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro 76080, Pakistan
| | - Changrui Lu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
29
|
Soccol CR, Costa ESFD, Letti LAJ, Karp SG, Woiciechowski AL, Vandenberghe LPDS. Recent developments and innovations in solid state fermentation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.biori.2017.01.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|