1
|
Guo J, Liu YF, Tang CH, Zhang JS, Feng J. The key technologies of Ganoderma lucidum liquid spawn preparation and scale expansion. World J Microbiol Biotechnol 2023; 39:138. [PMID: 36991290 DOI: 10.1007/s11274-023-03581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
Ganoderma lucidum possesses a variety of valuable pharmacological activities, and it has long been used to prevent and treat various human diseases. Up to now, far too little attention has been paid to the liquid spawn of G. lucidum, and the development of the G. lucidum industry is constrained by them. This work aimed to study the key technologies and scale-up preparation of G. lucidum liquid spawn, to achieve large-scale preparation of liquid spawn and solve the problem of unstable quality of G. lucidum. The plate culture, primary shake flask culture, shake flask preparation, and fermentor preparation of G. lucidum liquid spawn were explored in the process of liquid fermentation. The results showed that plate broth volume significantly affected mycelial growth rate. Biomass in the primary shake flask culture is significantly influenced by the picking position of plate mycelium. An artificial neural network coupled with a genetic algorithm was used for carbon and nitrogen sources concentration optimization to increase biomass and substrate utilization. The optimized parameter combination is as follows: glucose, 14.5 g L-1; yeast extract powder, 8.5 g L-1. Under this condition, the biomass (9.82 g L-1) and biomass on reducing sugar (0.79 g g-1) increased by 18.03% and 27.41% compared to the control, respectively. The metabolic activity of liquid spawn prepared by different fermentation scales was diverse, and the liquid spawn prepared by the fermentor has better activity. Conceivably, the liquid spawn process can more conducive be applied to large-scale industrial production.
Collapse
Affiliation(s)
- Jia Guo
- Key Laboratory of Edible Fungi Resources and Utilization (South) of Ministry of Agriculture, China. National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai. Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Yan-Fang Liu
- Key Laboratory of Edible Fungi Resources and Utilization (South) of Ministry of Agriculture, China. National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai. Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Chuan-Hong Tang
- Key Laboratory of Edible Fungi Resources and Utilization (South) of Ministry of Agriculture, China. National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai. Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Jing-Song Zhang
- Key Laboratory of Edible Fungi Resources and Utilization (South) of Ministry of Agriculture, China. National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai. Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai, 201403, China.
| | - Jie Feng
- Key Laboratory of Edible Fungi Resources and Utilization (South) of Ministry of Agriculture, China. National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai. Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai, 201403, China.
| |
Collapse
|
2
|
Hathwaik U, Lin JT, McMahan C. Molecular species of triacylglycerols in the rubber particles of Parthenium argentatum and Hevea brasiliensis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
3
|
Lin JT, Hou CT, Dulay RM, Ray K, Chen GQ. Structures of hydroxy fatty acids as the constituents of triacylglycerols in Philippine wild edible mushroom, Ganoderma lucidum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Hou CT, Lin JT, Dulay RMR, Ray K. Identification of the molecular species of acylglycerols containing hydroxy fatty acids in wild edible mushroom Ganoderma lucidum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|