1
|
Kamel MA, Gamal AA, Abdelhamid SA, El-Said MM, El-Messery TM, Zahran HA. Harnessing the benefits of seed oils: a comprehensive study on their role in functional foods. AMB Express 2025; 15:81. [PMID: 40418264 DOI: 10.1186/s13568-025-01875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/02/2025] [Indexed: 05/27/2025] Open
Abstract
There has been a growing interest in functional foods in recent years to improve health and boost immunity, particularly since the COVID-19 pandemic, which reflects their significant role in promoting health and preventing various diseases, especially metabolic disorders. This study investigated the antimicrobial, antioxidant, anticoagulant, and prebiotic activities of six different oils: Calotropis procera oil (CPO), Chia seed oil (CSO), Moringa oil (MO), Neem oil (NO), Black seed oil (BSO), and Wheat germ oil (WGO) and their potential applications in health and nutrition. The DPPH and ABTS assays were used to evaluate the antioxidant activity of these oils. A good diffusion assay and minimum inhibitory concentrations (MIC) method were used to investigate the antimicrobial activity against pathogenic bacteria and fungi of human interest. Also, the prebiotic activities of oils were tested on three probiotic strains of Lactobacillus to evaluate their role in promoting the growth of beneficial bacteria against the pathogenic E. coli. Furthermore, the haematological effect of these oils was investigated in vitro through measuring their anticoagulant, and Fibrinolytic activity. The results demonstrated that DPPH assay revealed that CPO and WGO exhibited the highest antioxidant activity with IC50 values of 15.2 µg/mL and 18.7 µg/mL, respectively, while BSO showed the least activity with an IC50 of 45.3 µg/mL. Antimicrobial activity, assessed using inhibition zone diameters, showed that CPO had the strongest effect against Staphylococcus aureus with a zone of 22 mm, followed by CSO at 19 mm. In terms of anticoagulant activity, CSO demonstrated the most potent fibrinolytic effect with a clot lysis percentage of 78%, while MO exhibited weaker activity at 35%. Prebiotic testing revealed that individual oils had limited effects on Lactobacillus growth, but a synergistic blend enhanced growth by 25% compared to controls. Overall, this study highlights the diverse health benefits of these oils and their potential as functional food ingredients that could contribute to improved health.
Collapse
Affiliation(s)
- Marwa A Kamel
- Environmental Virology Lab, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Amira A Gamal
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Sayeda A Abdelhamid
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Marwa M El-Said
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Tamer M El-Messery
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Hamdy A Zahran
- Fats and Oils Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
2
|
Nour SA, Foda DS, Elsehemy IA, Hassan ME. Co-administration of xylo-oligosaccharides produced by immobilized Aspergillus terreus xylanase with carbimazole to mitigate its adverse effects on the adrenal gland. Sci Rep 2024; 14:17481. [PMID: 39080323 PMCID: PMC11289116 DOI: 10.1038/s41598-024-67310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Carbimazole has disadvantages on different body organs, especially the thyroid gland and, rarely, the adrenal glands. Most studies have not suggested any solution or medication for ameliorating the noxious effects of drugs on the glands. Our study focused on the production of xylooligosaccharide (XOS), which, when coadministered with carbimazole, relieves the toxic effects of the drug on the adrenal glands. In addition to accelerating the regeneration of adrenal gland cells, XOS significantly decreases the oxidative stress caused by obesity. This XOS produced by Aspergillus terreus xylanase was covalently immobilized using microbial Scleroglucan gel beads, which improved the immobilization yield, efficiency, and operational stability. Over a wide pH range (6-7.5), the covalent immobilization of xylanase on scleroglucan increased xylanase activity compared to that of its free form. Additionally, the reaction temperature was increased to 65 °C. However, the immobilized enzyme demonstrated superior thermal stability, sustaining 80.22% of its original activity at 60 °C for 120 min. Additionally, the full activity of the immobilized enzyme was sustained after 12 consecutive cycles, and the activity reached 78.33% after 18 cycles. After 41 days of storage at 4 °C, the immobilized enzyme was still active at approximately 98%. The immobilized enzyme has the capability to produce xylo-oligosaccharides (XOSs). Subsequently, these XOSs can be coadministered alongside carbimazole to mitigate the adverse effects of the drug on the adrenal glands. In addition to accelerating the regeneration of adrenal gland cells, XOS significantly decreases the oxidative stress caused by obesity.
Collapse
Affiliation(s)
- Shaimaa A Nour
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt
| | - Doaa S Foda
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt
| | - Islam A Elsehemy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt
| | - Mohamed E Hassan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt.
- Centre of Excellence, Encapsulation and Nano Biotechnology Group, Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt.
| |
Collapse
|
3
|
Zanzan M, Ezzaky Y, Achemchem F, Hamadi F, Valero A, Mamouni R. Fermentative optimization and characterization of exopolysaccharides from Enterococcus faecium F58 isolated from traditional fresh goat cheese. Food Sci Biotechnol 2024; 33:1195-1205. [PMID: 38440680 PMCID: PMC10909037 DOI: 10.1007/s10068-023-01424-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 03/06/2024] Open
Abstract
This study focused on optimizing the fermentation-based production of Exopolysaccharides (EPS) from Enterococcus faecium F58 initially isolated from traditional Moroccan Jben, a fresh goat cheese. Using the central composite design, yeast extract, MnSO4, and time affect EPS concentration. The highest experimental and predicted EPS production yields were 2.46 g/L ± 0.38 and 2.86 g/L, respectively. Optimal concentrations of yeast extract (4.46 g/L) and MnSO4 (0.011 g/L) were identified after 26 h at 30 °C. Characterization of EPS was conducted using SEM with EDX, XRD, and FTIR analyses. These tests revealed a specific morphology and an amorphous structure. Additionally, thermogravimetric analysis indicated adequate EPS stability up to 200 °C with anti-adhesion properties against different pathogens. This study offers valuable insights into the optimized production of EPS from Enterococcus faecium F58, which exhibits significant structural and functional properties for various applications in the food and biotechnology industries. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01424-9.
Collapse
Affiliation(s)
- Mariem Zanzan
- LASIME Research Laboratory, Bioprocess and Environment Team, Agadir Superior School of Technology, Ibn Zohr University, BP 33/S, 80150 Agadir, Morocco
- Laboratory of Microbial Biotechnology and Vegetal Protection, Faculty of Sciences, University Ibn Zohr, BP 32/S, 80000 Agadir, Morocco
| | - Youssef Ezzaky
- LASIME Research Laboratory, Bioprocess and Environment Team, Agadir Superior School of Technology, Ibn Zohr University, BP 33/S, 80150 Agadir, Morocco
| | - Fouad Achemchem
- LASIME Research Laboratory, Bioprocess and Environment Team, Agadir Superior School of Technology, Ibn Zohr University, BP 33/S, 80150 Agadir, Morocco
| | - Fatima Hamadi
- Laboratory of Microbial Biotechnology and Vegetal Protection, Faculty of Sciences, University Ibn Zohr, BP 32/S, 80000 Agadir, Morocco
| | - Antonio Valero
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, 14014 Córdoba, Spain
| | - Rachid Mamouni
- Biotechnology, Materials & Environment Team, Faculty of Sciences, University Ibn Zohr, BP 32/S, 80000 Agadir, Morocco
| |
Collapse
|
4
|
Mettwally WS, Gamal AA, Shams El-Din NG, Hamdy AA. Biological activities and structural characterization of sulfated polysaccharide extracted from a newly Mediterranean Sea record Grateloupia gibbesii Harvey. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
Rahman SSA, Pasupathi S, Karuppiah S. Conventional optimization and characterization of microbial dextran using treated sugarcane molasses. Int J Biol Macromol 2022; 220:775-787. [PMID: 35987362 DOI: 10.1016/j.ijbiomac.2022.08.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
This study focuses the comparison on yield of microbial dextran using treated sugarcane molasses (SCM) as a feed stock from different treatment methods. The suitable method for treatment of SCM was identified on the basis of microbial dextran production. The different factors namely the concentrations of total sugars, nitrogen sources, inoculum size, shaking speed, initial medium pH, and phosphate sources influencing the production of microbial dextran were studied. The maximum yield of dextran was obtained to be 17.18 ± 0.08 g L-1 using the conventional optimization. The structural analysis of produced dextran from SCM with various treatment techniques was compared using Fourier-transform infra-red analysis and nuclear magnetic resonance spectroscopy. Later, the rheological behavior of produced microbial dextran was examined and found to be a non-Newtonian. To the best of our knowledge, the comparison on the production of microbial dextran through fermentation using SCM with various treatment strategies has not been performed yet.
Collapse
Affiliation(s)
- Sameeha Syed Abdul Rahman
- Bioprocess Engineering Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, Tamil Nadu, India
| | - Saroja Pasupathi
- Bioprocess Engineering Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, Tamil Nadu, India
| | - Sugumaran Karuppiah
- Bioprocess Engineering Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
6
|
Lucena MDA, Ramos IFDS, Geronço MS, de Araújo R, da Silva Filho FL, da Silva LMLR, de Sousa RWR, Ferreira PMP, Osajima JA, Silva-Filho EC, Rizzo MDS, Ribeiro AB, da Costa MP. Biopolymer from Water Kefir as a Potential Clean-Label Ingredient for Health Applications: Evaluation of New Properties. Molecules 2022; 27:3895. [PMID: 35745016 PMCID: PMC9231297 DOI: 10.3390/molecules27123895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
The present work aimed to characterize the exopolysaccharide obtained from water kefir grains (EPSwk), a symbiotic association of probiotic microorganisms. New findings of the technological, mechanical, and biological properties of the sample were studied. The EPSwk polymer presented an Mw of 6.35 × 105 Da. The biopolymer also showed microcrystalline structure and characteristic thermal stability with maximum thermal degradation at 250 °C. The analysis of the monosaccharides of the EPSwk by gas chromatography demonstrated that the material is composed of glucose units (98 mol%). Additionally, EPSwk exhibited excellent emulsifying properties, film-forming ability, a low photodegradation rate (3.8%), and good mucoadhesive properties (adhesion Fmax of 1.065 N). EPSwk presented cytocompatibility and antibacterial activity against Escherichia coli and Staphylococcus aureus. The results of this study expand the potential application of the exopolysaccharide from water kefir as a potential clean-label raw material for pharmaceutical, biomedical, and cosmetic applications.
Collapse
Affiliation(s)
- Monalisa de Alencar Lucena
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Igor Frederico da Silveira Ramos
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Maurycyo Silva Geronço
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Ricardo de Araújo
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | | | - Luís Manuel Lopes Rodrigues da Silva
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal;
| | - Rayran Walter Ramos de Sousa
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (R.W.R.d.S.); (P.M.P.F.)
- Pharmaceutical Sciences Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (R.W.R.d.S.); (P.M.P.F.)
- Pharmaceutical Sciences Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Josy Anteveli Osajima
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Edson Cavalcanti Silva-Filho
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Márcia dos Santos Rizzo
- Pharmaceutical Sciences Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Alessandra Braga Ribeiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Marcilia Pinheiro da Costa
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
- College of Pharmacy, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
- Pharmaceutical Sciences Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| |
Collapse
|
7
|
Leite AK, Santos BN, Fonteles TV, Rodrigues S. Cashew apple juice containing gluco-oligosaccharides, dextran, and tagatose promotes probiotic microbial growth. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Potential application of dextranase produced by Penicillium aculeatum in solid-state fermentation from brewer's spent grain in sugarcane process factories. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Gamal AA, Hashem AM, El-Safty MM, Soliman RA, Esawy MA. Evaluation of the antivirus activity of Enterococcus faecalis Esawy levan and its sulfated form. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Ezzat A, Fayad W, Ibrahim A, Kamel Z, El-Diwany AI, Shaker KH, Esawy MA. Combination treatment of MCF-7 spheroids by Pseudomonas aeruginosa HI1 levan and cisplatin. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Microbiological and environmental assessment of human oral dental plaque isolates. Microb Pathog 2019; 135:103626. [PMID: 31325573 DOI: 10.1016/j.micpath.2019.103626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/24/2019] [Accepted: 07/16/2019] [Indexed: 01/23/2023]
Abstract
Plaque-related diseases are amongst the most common ailments of the oral cavity. Streptococcus mutans is the causal agent of dental caries in animals and humans and is responsible for the formation and accumulation of plaques. This study aimed to identify and evaluate the role of the dental plaque isolates and its surrounding environment in plaque formation or inhibition. The study started with the identification of human dental plaque isolates from high caries index patients based on 16S rRNA and Mitis salivarius bacitracin agar (MSB) was used for S. mutans growing. Unexpectedly, the Streptococcus mutans was completely absent. The disc diffusion assay recorded that all the isolates had antimicrobial activity against the S. mutans growth. Enzymes assay revealed that the isolates produced dextransucrase, levansucrase and levanase activity with wide variation degrees. Also, the lactic acid production assay was done based in pH shift assessment. The highest pH shift and dextran yield were detected by the isolates Bacillus subtilis_AG1 and Bacillus mojavensis_AG3. The adherence test revealed that Lysinibacillus cresolivorans_W2 (MK411028) recorded the highest adhesion property (60%). Oligo- and polysaccharides were synthesized by the action of dextransucrase enzyme and their cytotoxicity tests were negative. Dextran with a molecular weight (117521 Da) recorded the highest antimicrobial efficacy against Bacillus subtilis_AG1 and Bacillusmojavensis_AG3 (65%, 63.5%) respectively. The results concluded that the dextran was the most important factor causing the dental plaque pathogenicity. Also, oral oligo- and polysaccharides might play a role in dental plaque control.
Collapse
|