1
|
Cheng Z, Yuan X, Cao X, Jia Z, Hao F, Chen J, Yue L, Wang Z. Preharvest and Postharvest Applications of Fe-Based Nanomaterials: A Potent Strategy for Improving Pepper Storage. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:497. [PMID: 40214542 PMCID: PMC11990499 DOI: 10.3390/nano15070497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
Nanomaterials (NMs) hold significant potential for enhancing agricultural production, extending the shelf life, and maintaining the quality of postharvest vegetables and fruits. In this study, after foliar spraying with 1, 10, and 50 mg of L-1 Fe-P NMs at different stages (seedling, flowering, and fruit stage), the pepper plant growth was significantly improved. In particular, the foliar application of 10 mg of L-1 Fe-P NMs during the flowering stage was found to be an optimal cultivation approach to promote the growth, yield, and freshness of peppers. Compared with the control group, Fe-P NMs increased net photosynthetic rate, plant height, and fruit number by 132.7%, 40.4%, and 265.7%, respectively. The applied Fe-P NMs, at the flowering stage, altered the capsaicin metabolic pathway, upregulating the genes for the synthesis of total phenols, flavonoids, lignans, and capsaicinoids. Consequently, these metabolites, which are beneficial for maintaining the freshness of pepper fruits, were increased. Furthermore, Fe-P NMs at the flowering stage downregulated the abundance of rot-causing microorganisms (Enterobacter and Chryseobacterium) and upregulated beneficial microorganisms (Pseudomonas, Arthrobacter, Sphingobacterium, and Paenibacillus) to change the microbial community structure. This ultimately created a micro-ecological environment conducive to the preservation of pepper fruits. For comparison, during pepper fruit storage, dipping and spraying with Fe-P NM suspensions effectively delayed weight loss and enhanced the growth of beneficial bacteria. Nevertheless, the effect was less pronounced than preharvest foliar application. This study provides insights into the pre- or postharvest application of NMs for improving the preservation performance of pepper fruits.
Collapse
Affiliation(s)
- Zhuang Cheng
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Zhemin Jia
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Fang Hao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Jiayi Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| |
Collapse
|
2
|
Herath Dissanayakalage SS, Kaur J, Achari SR, Sawbridge TI. Identification of in planta bioprotectants against Fusarium wilt in Medicago sativa L. (lucerne) from a collection of bacterial isolates derived from Medicago seeds. Front Microbiol 2025; 16:1544521. [PMID: 40078546 PMCID: PMC11897269 DOI: 10.3389/fmicb.2025.1544521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. medicaginis (Fom) is an important disease affecting lucerne/alfalfa cultivations worldwide. Medicago sativa L. (lucerne) is one of the major legume crops in global forage industry. This study aimed to identify bacteria capable of biologically controlling the wilt pathogen through a comprehensive screening of bacterial isolates obtained from domesticated and wild growing Medicago seeds. Using a multi-tiered evaluation pipeline, including in vitro, soil-free and potting mix-based pathogenicity and bioprotection assay systems, the bioprotection efficacy of 34 bacterial isolates derived from Medicago seeds was initially evaluated against six Fusarium strains in vitro. Fusarium oxysporum (Fo) F5189, which has previously been characterized as a Fusarium oxysporum f. sp. medicaginis isolate causing Fusarium wilt in lucerne was selected for in planta assays. Lucerne cultivars Grazer and Sequel, representing susceptible and resistant genotypes were chosen to assess the disease progression. Pathogenicity and bioprotection time-course studies were conducted to understand the temporal dynamics of host-pathogen interactions and efficacy of the bioprotectants. The disease symptoms were scored using a disease rating index developed in this study. The results indicated variability in bioprotection efficacy across bacterial isolates, with some strains suppressing disease in both soil-free and potting mix-based systems. Paenibacillus sp. (Lu_MgY_007; NCBI: PQ756884) and Pseudomonas sp. (Lu_LA164_018; NCBI: PQ756887) were identified as promising bioprotectants against Fusarium wilt under tested growth conditions. The time-course studies highlighted the critical role of persistent biocontrol activity and precise timing of biocontrol application for achieving long-term disease suppression. Overall, the observed reduction in disease severity underscores the potential of these bioprotectants as sustainable strategies for managing Fusarium wilt in lucerne cultivars. However, comprehensive molecular-level analyses are warranted to elucidate the underlying pathogenicity and bioprotection mechanisms, offering valuable insights for the development of more precise and effective future biocontrol strategies in agricultural systems.
Collapse
Affiliation(s)
- Shenali Subodha Herath Dissanayakalage
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Jatinder Kaur
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Saidi R. Achari
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Timothy I. Sawbridge
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
3
|
Zhang H, Shi H, Luo M, Li Y, Li W, Wang J, Shen S. Pantoea- Bacillus as a Composite Microbial Community: Inhibition and Potential Mechanism Against Potato Anthracnose Disease. J Fungi (Basel) 2025; 11:121. [PMID: 39997415 PMCID: PMC11856368 DOI: 10.3390/jof11020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
The potato (Solanum tuberosum), an important component of global food security, often faces threats from various diseases during its growth process, especially potato anthracnose (Colletotrichum coccodes), which severely affects crop yield and quality. In this study, we successfully isolated and identified two bacteria with potential for biological control, (Pantoea agglomerans) and (Bacillus subtilis). The experimental results indicate that the bacterial suspensions of strains JZ-1-1-1 and JZ-2-2-2 had a significant inhibitory effect on the pathogen ZL-7, with the inhibition rate of JZ-1-1-1 reaching as high as 55.21%. The inhibition rate of JZ-2-2-2 was 53.48%. When these two strains were mixed at a 4:6 ratio, the inhibitory effect on pathogenic bacteria was even more significant, reaching 68.58% inhibition. In addition, the composite microbial community produced biofilms with their yield gradually increasing within 24 h and showing a slight decrease after 72 h. The efficacy test further indicated that the composite bacterial suspension was highly effective in controlling the spread of lesions, with an efficacy rate as high as 81.40%. In the analysis of defense enzyme activity, peroxidase (POD) and superoxide dismutase (SOD) levels peaked on day seven, while the composite bacterial suspension significantly reduced malondialdehyde (MDA) and polyphenol oxidase (PPO) activity. Quantitative real-time PCR confirmed that these two strains effectively colonized the surface of potato tubers. In summary, this study provides an important theoretical basis and practical guidance for the application of biological methods for the prevention and control of potato anthracnose.
Collapse
Affiliation(s)
- Haojie Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.Z.); (W.L.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resource, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Huiqin Shi
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.Z.); (W.L.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resource, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Mingkai Luo
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.Z.); (W.L.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resource, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Yanan Li
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.Z.); (W.L.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resource, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Wei Li
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.Z.); (W.L.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resource, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Jian Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.Z.); (W.L.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resource, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Shuo Shen
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.Z.); (W.L.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resource, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| |
Collapse
|
4
|
Legrifi I, Al Figuigui J, Lahmamsi H, Taoussi M, Radi M, Belabess Z, Lazraq A, Barka EA, Lahlali R. Unlocking olive rhizobacteria: harnessing biocontrol power to combat olive root rot and promote plant growth. Int Microbiol 2025:10.1007/s10123-025-00632-z. [PMID: 39808253 DOI: 10.1007/s10123-025-00632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Olive trees are susceptible to various diseases, notably root rot caused by Pythium spp., which presents significant challenges to cultivation. Conventional chemical control methods have limitations, necessitating exploration of eco-friendly alternatives like biological control strategies. This study aims to evaluate the potential of rhizobacteria in managing Pythium schmitthenneri-induced root rot in olive trees. We screened 140 bacteria isolated from olive tree rhizospheres for antifungal activity against the pathogen in vitro. Twelve isolates exhibited promising antifungal activity, identified through 16S rDNA gene sequencing as primarily Bacillus, Pseudomonas, Stenotrophomonas, and Alcaligenes species. Particularly, Pseudomonas koreensis (A28 and A29), Pseudomonas reinekei (A16), and Bacillus halotolerans (A10) were the highest effective strains. Mechanistic investigations revealed positive protease production in all twelve isolates, with eight producing amylase and cellulase. Chitinase activity was absent, while five solubilized tricalcium phosphate. Furthermore, eight secreted hydrocyanic acid (HCN), ten synthesized indole-3-acetic acid (IAA), and nine produced siderophores. Variability existed in antimicrobial substance production, including bacillomycin (seven isolates), iturin (eleven isolates), fengycin (two isolates), and surfactin (three isolates). Plant growth-promoting rhizobacteria (PGPR) capabilities were assessed using canola (Brassica napus) seedlings, showing enhanced growth in treated seedlings compared to controls. Greenhouse experiments confirmed the biocontrol efficacy of P. koreensis A28 and Bacillus subtilis C6 against root rot disease. These findings suggest these strains could serve as promising tools for managing olive tree root rot, offering a sustainable alternative to hazardous agrochemicals.
Collapse
Grants
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
Collapse
Affiliation(s)
- Ikram Legrifi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, P.O. Box 2202, 30000, Fez, Morocco
| | - Jamila Al Figuigui
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, P.O. Box 2202, 30000, Fez, Morocco
| | - Haitam Lahmamsi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
- Department of Biology, Laboratory of Microbial Biotechnology and Bioactive Molecules, Sidi Mohamed BenAbdellah University, Route d'Imouzzer, PO Box 2202, Fez, Morocco
| | - Mohammed Taoussi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
- Environment and Valorization of Microbial and Plant Resources Unit, Faculty of Sciences, Moulay Ismail University, Zitoune, PO Box 11201, Meknes, Morocco
| | - Mohammed Radi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
- Environment and Valorization of Microbial and Plant Resources Unit, Faculty of Sciences, Moulay Ismail University, Zitoune, PO Box 11201, Meknes, Morocco
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Km 13, Route Haj Kaddour, BP.578, 50000, Meknes, Morocco
| | - Abderrahim Lazraq
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, P.O. Box 2202, 30000, Fez, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes- USC INRAe1488, Université de Reims Champagne-Ardenne, 51100, Reims, France
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
| |
Collapse
|
5
|
Vio SA, Galar ML, Gortari MC, Balatti P, Garbi M, Lodeiro AR, Luna MF. Multispecies Bacterial Bio-Input: Tracking and Plant-Growth-Promoting Effect on Lettuce var. sagess. PLANTS (BASEL, SWITZERLAND) 2023; 12:736. [PMID: 36840083 PMCID: PMC9962684 DOI: 10.3390/plants12040736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The use of multispecies bacterial bio-inputs is a promising strategy for sustainable crop production over the use of single-species inoculants. Studies of the use of multispecies bio-inputs in horticultural crops are scarce, not only on the growth-promoting effects of each bacterium within the formulation, but also on their compatibility and persistence in the root environment. In this work, we described that a multispecies bacterial bio-input made up of Azospirillum argentinense Az39, Gluconacetobacter diazotrophicus PAL-5, Pseudomonas protegens Pf-5 and Bacillus sp. Dm-B10 improved lettuce plant growth more effectively than when these strains were inoculated as single-species bio-inputs. Bacteria persisted together (were compatible) and also colonized seedling roots of lettuce plants grown in controlled conditions. Interestingly, colonization was highly related to an early and enhanced growth of seedlings grown in the nursery. A similar effect on plant growth was found in lettuce plants in a commercial greenhouse production in the peri-urban area of La Plata City, Buenos Aires, Argentina. To our knowledge, this is the first study demonstrating that a synthetic mixture of bacteria can colonize and persist on lettuce plants, and also showing their synergistic beneficial effect both in the nursery greenhouse as well as the commercial production farm.
Collapse
Affiliation(s)
- Santiago A. Vio
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (CONICET/UNLP), Calle 50 227, La Plata 1900, Argentina
| | - María Lina Galar
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (CONICET/UNLP), Calle 50 227, La Plata 1900, Argentina
| | - María Cecilia Gortari
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (CONICET/UNLP), Calle 50 227, La Plata 1900, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), Calle 526 e/ Calles 10 y 11, La Plata 1900, Argentina
| | - Pedro Balatti
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), Calle 526 e/ Calles 10 y 11, La Plata 1900, Argentina
- Centro de Investigaciones de Fitopatología, CIDEFI (CIC–UNLP), Calle 60 y 119, La Plata 1900, Argentina
| | - Mariana Garbi
- Climatología y Fenología Agrícola, Facultad de Ciencias Agrarias y Forestales, UNLP, Calle 60 y 119, La Plata 1900, Argentina
| | - Aníbal Roberto Lodeiro
- Instituto de Biotecnología y Biología Molecular, IBBM (CONICET/UNLP), Calle 47 y 115, La Plata 1900, Argentina
- Genética, Facultad de Ciencias Agrarias y Forestales, UNLP, Calle 60 y 119, La Plata 1900, Argentina
| | - María Flavia Luna
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (CONICET/UNLP), Calle 50 227, La Plata 1900, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), Calle 526 e/ Calles 10 y 11, La Plata 1900, Argentina
| |
Collapse
|
6
|
Transmitting silks of maize have a complex and dynamic microbiome. Sci Rep 2021; 11:13215. [PMID: 34168223 PMCID: PMC8225909 DOI: 10.1038/s41598-021-92648-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
In corn/maize, silks emerging from cobs capture pollen, and transmit resident sperm nuclei to eggs. There are > 20 million silks per U.S. maize acre. Fungal pathogens invade developing grain using silk channels, including Fusarium graminearum (Fg, temperate environments) and devastating carcinogen-producers (Africa/tropics). Fg contaminates cereal grains with mycotoxins, in particular Deoxynivalenol (DON), known for adverse health effects on humans and livestock. Fitness selection should promote defensive/healthy silks. Here, we report that maize silks, known as styles in other plants, possess complex and dynamic microbiomes at the critical pollen-fungal transmission interval (henceforth: transmitting style microbiome, TSM). Diverse maize genotypes were field-grown in two trial years. MiSeq 16S rRNA gene sequencing of 328 open-pollinated silk samples (healthy/Fg-infected) revealed that the TSM contains > 5000 taxa spanning the prokaryotic tree of life (47 phyla/1300 genera), including nitrogen-fixers. The TSM of silk tip tissue displayed seasonal responsiveness, but possessed a reproducible core of 7–11 MiSeq-amplicon sequence variants (ASVs) dominated by a single Pantoea MiSeq-taxon (15–26% of sequence-counts). Fg-infection collapsed TSM diversity and disturbed predicted metabolic functionality, but doubled overall microbiome size/counts, primarily by elevating 7–25 MiSeq-ASVs, suggestive of a selective microbiome response against infection. This study establishes the maize silk as a model for fundamental/applied research of plant reproductive microbiomes.
Collapse
|
7
|
Ezrari S, Mhidra O, Radouane N, Tahiri A, Polizzi G, Lazraq A, Lahlali R. Potential Role of Rhizobacteria Isolated from Citrus Rhizosphere for Biological Control of Citrus Dry Root Rot. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050872. [PMID: 33926049 PMCID: PMC8145030 DOI: 10.3390/plants10050872] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Citrus trees face threats from several diseases that affect its production, in particular dry root rot (DRR). DRR is a multifactorial disease mainly attributed to Neocosmospora (Fusarium) solani and other several species of Neocosmospora and Fusarium spp. Nowadays, biological control holds a promising control strategy that showed its great potential as a reliable eco-friendly method for managing DRR disease. In the present study, antagonist rhizobacteria isolates were screened based on in vitro dual culture bioassay with N. solani. Out of 210 bacterial isolates collected from citrus rhizosphere, twenty isolates were selected and identified to the species level based on the 16S rRNA gene. Molecular identification based on 16S rRNA gene revealed nine species belonging to Bacillus, Stenotrophomonas, and Sphingobacterium genus. In addition, their possible mechanisms involved in biocontrol and plant growth promoting traits were also investigated. Results showed that pectinase, cellulose, and chitinase were produced by eighteen, sixteen, and eight bacterial isolates, respectively. All twenty isolates were able to produce amylase and protease, only four isolates produced hydrogen cyanide, fourteen isolates have solubilized tricalcium phosphate, and ten had the ability to produce indole-3-acetic acid (IAA). Surprisingly, antagonist bacteria differed substantially in their ability to produce antimicrobial substances such as bacillomycin (five isolates), iturin (ten isolates), fengycin (six isolates), surfactin (fourteen isolates), and bacteriocin (subtilosin A (six isolates)). Regarding the PGPR capabilities, an increase in the growth of the bacterial treated canola plants, used as a model plant, was observed. Interestingly, both bacterial isolates Bacillus subtilis K4-4 and GH3-8 appear to be more promising as biocontrol agents, since they completely suppressed the disease in greenhouse trials. Moreover, these antagonist bacteria could be used as bio-fertilizer for sustainable agriculture.
Collapse
Affiliation(s)
- Said Ezrari
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (S.E.); (O.M.); (N.R.); (A.T.)
- Laboratory of Functional Ecology and Engineering Environment, Department of Biology, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco;
| | - Oumayma Mhidra
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (S.E.); (O.M.); (N.R.); (A.T.)
| | - Nabil Radouane
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (S.E.); (O.M.); (N.R.); (A.T.)
- Laboratory of Functional Ecology and Engineering Environment, Department of Biology, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco;
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (S.E.); (O.M.); (N.R.); (A.T.)
| | - Giancarlo Polizzi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia Vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Abderrahim Lazraq
- Laboratory of Functional Ecology and Engineering Environment, Department of Biology, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco;
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (S.E.); (O.M.); (N.R.); (A.T.)
| |
Collapse
|