1
|
Rasera GB, de Camargo AC, de Castro RJS. Bioaccessibility of phenolic compounds using the standardized INFOGEST protocol: A narrative review. Compr Rev Food Sci Food Saf 2023; 22:260-286. [PMID: 36385735 DOI: 10.1111/1541-4337.13065] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
The INFOGEST protocol creation was a watershed for phenolic bioaccessibility studies. Because of this important initiative to standardize bioaccessibility studies, data comparisons between different laboratories are now expedited. It has been eight years since the INFOGEST protocol creation, and three from the latest update. However, the current status in terms of phenolic bioaccessibility and how far different laboratories are from reaching a consensus are still unrevealed. In this sense, this narrative review considered an evaluation of different studies that applied the INFOGEST protocol to investigate the bioaccessibility of phenolic compounds. The central objective was to compile the main findings and consensus and to identify possible gaps and future opportunities. This approach intends to further facilitate the use of this protocol by professionals in the field of food science and technology and related areas, generating a reflection on the actual level of standardization of the method. Despite the differences in phenolic compounds from diverse food matrices, and their peculiar behavior, some trends could be elucidated, in terms of phenolic release, stability, and/or transformation upon in vivo digestion. In contrast, there was no general consensus regarding sample preparation, how to report results and the form to calculate bioaccessibility, making it difficult to compare different studies. There is still a long road to effectively standardize the results obtained for phenolic bioaccessibility using the INFOGEST protocol, which is also an opportunity in terms of food analysis that can impact the food industry, especially for the development of nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Gabriela Boscariol Rasera
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| | | | | |
Collapse
|
2
|
Rashed MMA, You L, Ghaleb ADS, Du Y. Two-Phase Extraction Processes, Physicochemical Characteristics, and Autoxidation Inhibition of the Essential Oil Nanoemulsion of Citrus reticulata Blanco (Tangerine) Leaves. Foods 2022; 12:foods12010057. [PMID: 36613276 PMCID: PMC9818749 DOI: 10.3390/foods12010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Combined ultrasound-microwave techniques and pre-enzymatic treatment (hemicellulase and cellulase) enhance essential oil isolation from Citrus reticulata Blanco (tangerine) leaves (CrBL). Subsequently, synergistic effects of modified amorphous octenyl succinic anhydride starch (OSA-MS), almond oil, and high-energy microfluidics were studied in synergy with ultrasound techniques in the production of CrBL essential oil (CrBL-EO) nanoemulsion (CrBL-EONE). GC-MS was used to study the extraction technique. Dynamic light scattering (DLS) analysis was used with confocal laser scanning microscopy (CLSM) techniques to investigate the nanoemulsion matrices' physical and chemical properties. The D-limonene nanoemulsion (D-LNE) reached the optimal size of droplets (65.3 ± 1.1 r.nm), polydispersity index (PDI) (0.167 ± 0.015), and ζ-potential (-41.0 ± 0.4 mV). Besides, the CrBL-EONE obtained the optimal size of droplets (86.5 ± 0.5 r.nm), PDI (0.182 ± 0.012), and ζ-potential (-40.4 ± 0.8 mV). All the nanoparticle treatments showed significant values in terms of the creaming index (CI%) and inhibition activity (IA%) in the β-carotene/linoleate system with a low degradation rate (DR). The current study's findings showed that integrated ultrasound-microwave techniques and pre-enzymatic treatment could enhance the extraction efficiency of the CrBL-EO. In addition, OSA-MS and almond oil can also be employed to produce CrBL-EONE and D-LNE.
Collapse
Affiliation(s)
- Marwan M. A. Rashed
- Key Laboratory of Fermentation Resource and Application in Sichuan Higher Education, Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644001, China
- School of Biological and Food Engineering, Suzhou University, Bianhe Middle Road 49, Yongqiao, Suzhou 234000, China
- Correspondence:
| | - Ling You
- Key Laboratory of Fermentation Resource and Application in Sichuan Higher Education, Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644001, China
| | - Abduljalil D. S. Ghaleb
- Faculty of Applied and Medical Science, AL-Razi University, Al-Rebatt St., Sana’a 216923, Yemen
| | - Yonghua Du
- Key Laboratory of Fermentation Resource and Application in Sichuan Higher Education, Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644001, China
| |
Collapse
|
3
|
Mencin M, Jamnik P, Mikulič Petkovšek M, Veberič R, Terpinc P. Enzymatic treatments of raw, germinated and fermented spelt (Triticum spelta L.) seeds improve the accessibility and antioxidant activity of their phenolics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Tena N, Asuero AG. Up-To-Date Analysis of the Extraction Methods for Anthocyanins: Principles of the Techniques, Optimization, Technical Progress, and Industrial Application. Antioxidants (Basel) 2022; 11:antiox11020286. [PMID: 35204169 PMCID: PMC8868086 DOI: 10.3390/antiox11020286] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 01/24/2023] Open
Abstract
Nowadays, food industries are concerned about satisfying legal requirements related to waste policy and environmental protection. In addition, they take steps to ensure food safety and quality products that have high nutritional properties. Anthocyanins are considered high added-value compounds due to their sensory qualities, colors, and nutritional properties; they are considered bioactive ingredients. They are found in high concentrations in many by-products across the food industry. Thus, the non-conventional extraction techniques presented here are useful in satisfying the current food industry requirements. However, selecting more convenient extraction techniques is not easy. Multiple factors are implicated in the decision. In this review, we compile the most recent applications (since 2015) used to extract anthocyanins from different natural matrices, via conventional and non-conventional extraction techniques. We analyze the main advantages and disadvantages of anthocyanin extraction techniques from different natural matrices and discuss the selection criteria for sustainability of the processes. We present an up-to-date analysis of the principles of the techniques and an optimization of the extraction conditions, technical progress, and industrial applications. Finally, we provide a critical comparison between these techniques and some recommendations, to select and optimize the techniques for industrial applications.
Collapse
|
5
|
Obtaining Bioactive Compounds from the Coffee Husk ( Coffea arabica L.) Using Different Extraction Methods. Molecules 2020; 26:molecules26010046. [PMID: 33374108 PMCID: PMC7795416 DOI: 10.3390/molecules26010046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/03/2022] Open
Abstract
Coffee husks (Coffea arabica L.) are characterized by exhibiting secondary metabolites such as phenolic compounds, which can be used as raw material for obtaining bioactive compounds of interest in food. The objective of this study is to evaluate different methods for obtaining the raw material and extracting solutions of bioactive compounds from coffee husks. Water bath and ultrasound-assisted extraction methods were used, using water (100%) or ethanol (100%) or a mixture of both (1:1) as extracting solutions and the form of the raw material was in natura and dehydrated. The extracts were evaluated by their antioxidant potential using DPPH radicals, ABTS, and iron reduction (ferric reducing antioxidant power (FRAP)), and later total phenolic compounds, total flavonoids, and condensed tannins were quantified the phenolic majority compounds were identified. It was verified that the mixture of water and ethanol (1:1) showed better extraction capacity of the compounds with antioxidant activity and that both conventional (water bath) or unconventional (ultrasound) methods showed satisfactory results. Finally, a satisfactory amount of bioactive compounds was observed in evaluating the chemical composition (total phenolic compounds, total flavonoids, condensed tannins, as well as the analysis of the phenolic profile) of these extracts. Corroborating with the results of the antioxidant activities, the best extracting solution was generally the water and ethanol mixture (1:1) using a dehydrated husk and water bath as the best method, presenting higher levels of the bioactive compounds in question, with an emphasis on chlorogenic acid. Thus, it can be concluded that the use of coffee husk as raw material to obtain extracts of bioactive compounds is promising. Last, the conventional method (water bath) and the water and ethanol mixture (1:1) stood out among the methods and extracting solutions used for the dehydrated coffee husk.
Collapse
|
6
|
Rezende YRRS, Nogueira JP, Silva TOM, Barros RGC, Oliveira CSD, Cunha GC, Gualberto NC, Rajan M, Narain N. Enzymatic and ultrasonic-assisted pretreatment in the extraction of bioactive compounds from Monguba (Pachira aquatic Aubl) leaf, bark and seed. Food Res Int 2020; 140:109869. [PMID: 33648187 DOI: 10.1016/j.foodres.2020.109869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
The present study aims to characterize leaf, bark and seed of monguba in terms of their physicochemical and bioactive composition, and to determine total phenolic compounds (TPC) and total flavonoids (TF), well as their antioxidant activities (AA), of three organic solvent extracts with and without enzyme pretreatment by ultrasonic assisted extraction. Physicochemical composition was measured by pH, total titratable acidity, total soluble solids, moisture, ashes, lipids, crude protein, raw fiber, total carbohydrates, and water activity as well as, phytochemical composition analysis constituted of sugars, condensed (CT) and hydrolysable tannins (HT), carotenoids, total anthocyanins (TA), and organic acids contents. TPC and TF contents, and UHPLC/PDA/QDa flavonoids and phenolic acids quantification were performed for the solvent extracts. Antioxidant activity was determined by radical scavenging capacity assays (ABTS, DPPH, and ORAC), and reducing power assay (FRAP). Results showed that the leaf stood out with higher concentrations of ash, HT, TA and carotenoids; the bark with higher concentrations of raw fiber, total carbohydrates and organic acids (tartaric, quinic and 3.4-dihydroxybenzoic acids); in contrast, the seeds showed high concentrations of lipids, crude protein, sugars (fructose and sucrose), CT, and high values in all AA. The solvents significantly influenced the extraction of TPC and TF, highlighting ethanol. In general, the enzymatic treatments empowered the phenolic extraction and AA. The monguba seed extracts showed higher concentrations of hydroxycinnamic acids (chlorogenic acid, mainly), and flavanols (catechin and epicatechin), whereas the leaf extracts, flavanones (narigenin), flavonols (rutin, mainly) and flavones (acacetin). The bark extracts stood out for the presence of vanillin. The monguba seed extract can be used in functional foods production.
Collapse
Affiliation(s)
| | - Juliete Pedreira Nogueira
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão - SE, Brazil
| | - Taís Oliveira Matos Silva
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão - SE, Brazil
| | - Romy Gleyse Chagas Barros
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão - SE, Brazil
| | - Christean Santos de Oliveira
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão - SE, Brazil
| | - Graziele Costa Cunha
- Laboratory of Studies of Natural Organic Matter, Federal University of Sergipe, 49100-000 São Cristóvão - SE, Brazil
| | - Nayjara Carvalho Gualberto
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão - SE, Brazil
| | - Murugan Rajan
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão - SE, Brazil
| | - Narendra Narain
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão - SE, Brazil.
| |
Collapse
|
7
|
Rashed MMA, Mahdi AA, Ghaleb ADS, Zhang FR, YongHua D, Qin W, WanHai Z. Synergistic effects of amorphous OSA-modified starch, unsaturated lipid-carrier, and sonocavitation treatment in fabricating of Lavandula angustifolia essential oil nanoparticles. Int J Biol Macromol 2020; 151:702-712. [PMID: 32092424 DOI: 10.1016/j.ijbiomac.2020.02.224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/18/2022]
Abstract
This investigation aims to evaluate the synergistic effects of amorphous OSA-modified starch, unsaturated lipid-carrier (RBD-SFO), and high-energy microfluidization in synergy with the ultrasonic techniques in fabricating of Lavandula angustifolia essential oil (LAF-EO) nanoparticle. GC-MS and SEM techniques were employed to investigate the LAF-EO isolation method used. DLS analysis was employed along with CLSM and TEM techniques to investigate the physicochemical properties of nanoemulsion formulation (NE) matrices. The NE achieved the optimal spherical and size distributions of droplets (125.7 nm), Poly Dispersity Index (PdI) (0.183), and ζ-potential (-40.3 mV) when the contents of the formulation matrix were as follows: OSA-MS (2%), LAF-EO (1%), RBD-SFO (1%), and Tween-80 (1%). The findings of this work provide a new concept about the synergistic effects of amorphous OSA-modified starch and unsaturated lipid carrier as safe-grade macromolecules in the fabricating of LAF-EO nanoparticles. Besides, the application of the ultrasound cavitation phenomenon has been shown to have effective effect in reducing the droplet hydrodynamic diameter along with enhancing the distribution (PdI) and electrokinetic potential of the LAF-EO nanoparticles.
Collapse
Affiliation(s)
- Marwan M A Rashed
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, Jiangsu Province, China.
| | - Amer Ali Mahdi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, Jiangsu Province, China
| | - Abduljalil D S Ghaleb
- Faculty of Applied and Medical Science, AL-Razi University, Al-Rebatt St., Sana'a, Yemen
| | - Feng Rui Zhang
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China
| | - Du YongHua
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China
| | - Wei Qin
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China.
| | - Zhou WanHai
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China.
| |
Collapse
|
8
|
In vitro bioactivity approach of unripe genipap (Genipa americana L., Rubiaceae) fruit extract and its solid lipid microparticle. Food Res Int 2019; 127:108720. [PMID: 31882083 DOI: 10.1016/j.foodres.2019.108720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 11/23/2022]
Abstract
Growing awareness in favor of innovative and healthier alternatives is creating a noticeable shift from synthetic colorants to natural additives. And, such a swing in the consumer market is growing slowly but noticeably. In this context, genipap (Genipa americana L.) fruit represents an emerging source of blue colorants in Latin America with extensive application possibilities. This is despite the fact that there are few studies concerning its toxicity predictive factors. In this early-stage study we propose to investigate safety issues around genipap extract (IBBP); we also attempt to identify fingerprint profiling of both IBBP extract and solid lipid microparticles containing IBBP extract (SLM-IBBP) using in vitro assays. The main compounds identified were genipin, and genipin 1-β-gentiobioside. Results indicated that IBBP extract, at 25 µg/mL, was able to promote DNA damage in CHO-K1 cells, suggesting a genotoxic effect. On the other hand, the SLM-IBBP inhibited almost all cancer cell lines with GI50 ranging from 0.25 μg/mL to 43.5 μg/mL. Also, IBBP-SLM seems to exert a desirable apoptosis induction (at 25 µg/mL dosage). The next steps for our work, therefore, will focus on other nanoparticle formulation approaches, in particular with the use of natural Brazilian starch. An evaluation of the metabolism and distribution of microparticles, and their safety for food and pharmaceutical purposes, are also required.
Collapse
|