1
|
Rod-In W, You S, Park WJ, Surayot U. Suaeda maritima polysaccharides attenuate LPS-induced inflammation of RAW264.7 cells and antioxidative activity. Int Immunopharmacol 2024; 137:112482. [PMID: 38878490 DOI: 10.1016/j.intimp.2024.112482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Our research focused on extracting polysaccharides from Suaeda maritima (SMP) to obtain crude polysaccharides (SMP-C), which were subsequently purified into SMP-F1 and SMP-F2. SMPs were evaluated for anti-inflammatory effects and SMP-F1 showed the highest inhibitory effects on nitric oxide (NO) production. The monosaccharide composition analysis of SMP-F1 (molecular weight of 112.2 × 103 g/mol) revealed predominant levels of glucose (45.4 %), arabinose (20.5 %), mannose (14.2 %), and galactose (12.7 %). The primary backbone of SMP-F1 consisted of (1 → 4)-D-glucopyranoside, (1 → 4,6)-D-glucopyranoside, (1 → 3)-D-mannopyranoside, (1 → 3,6)-D-mannopyranoside, and (1 → 5)-L-arabifuranoside. In addition, we hydrolysed SMP-F1 to SMP-H1, SMP-H2, and SMP-H3 and investigated their anti-inflammatory effects on RAW264.7 macrophages. Following SMP-F1 hydrolysis, SMP-H3 (molecular weight of 25.8 × 103 g/mol) exhibited superior anti-inflammatory properties compared to SMP-H1 and SMP-H2, demonstrating a significant decrease in NO production. SMP-H3 also demonstrated a remarkable reduction in the secretion of inflammatory mediators including NO, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines including tumour necrosis factor-alpha (TNF-α), interleukin (IL-1β and IL-6), while increasing IL-10 expression. Furthermore, SMP-H3 significantly inhibited LPS-stimulated cluster of differentiation (CD) 11b and CD40 expression. Our subsequent investigation unveiled the involvement of SMP-H3-activated macrophages in the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Additionally, SMP-H3 exhibited antioxidant activity by scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide, and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) free radicals. These findings suggest the potential of SMP-H3 as an ingredient in the development of alternative drugs or functional foods.
Collapse
Affiliation(s)
- Weerawan Rod-In
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand; Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Sangguan You
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Woo Jung Park
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea; KBIoRANCh Co.,Ltd, Gangneung, Gangwon 25457, Republic of Korea
| | - Utoomporn Surayot
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; Cluster of Innovation for Sustainable Seafood Industry and Value Chain Management, Chiang Mai University, Samut Sakhon 74000, Thailand.
| |
Collapse
|
2
|
Manojkumar S, Thandeeswaran M, Thangavel SK, Arjunan A, Muthuselvam M, Kalaiarasi G, Gnanajothi K. Phytochemical Screening, In Silico Molecular Docking, ADME Properties, and In Vitro Antioxidant, Anticancer, and Antidiabetic Activity of Marine Halophyte Suaeda maritima (L.) Dumort. ACS OMEGA 2024; 9:11200-11216. [PMID: 38496978 PMCID: PMC10938337 DOI: 10.1021/acsomega.3c05591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 03/19/2024]
Abstract
Medicinally valuable components derived from natural resources are highly desirable as prospective alternatives to synthetic drugs to treat fatal diseases, such as cancer and diabetes mellitus. Suaeda maritima (L.) Dumort (Amaranthaceae) (S. maritima) is a halophyte plant that can thrive in saline environments and possesses excellent medicinal properties. Hence, for the present investigation, S. maritima has been chosen, and its phytochemical constituents have been extracted utilizing various solvents, including hexane, acetone, and methanol, and identified by GC-MS, LC-MS, and HPLC analyses. The antioxidant activity of the compounds using DPPH, ABTS, and reducing power assays demonstrated that all three extracts of S. maritima possessed significant radical scavenging activity comparable to standard ascorbic acid with lower IC50 values (69.20-95.58 μg/mL). In addition, the evaluation of antidiabetic activity by α-amylase inhibition and α-glucosidase inhibition methods revealed that the acetone extract of S. maritima (SMAE) displayed equipotent activity of standard acarbose with an IC50 of 32.6 μg/mL. Advantageously, SMAE also exhibited better inhibition activity against the growth of lung cancer cells with an IC50 of 78.19. μg/mL and less toxicity on the noncancerous HUVEC cells with a high IC50 of 300 μg/mL. In addition, the cancer cell death mechanism via the apoptotic pathway induced by SMAE was confirmed by DAPI staining and ROS analysis. The analysis of ADME properties, including absorption, distribution, metabolism, and excretion, witnessed that the physicochemical and druglikeness factors were best catered by stigmasterol, γ-sitosterol, and vitamin E. Further, the key phytochemicals identified from SMAE were docked with CtBP1 and SOX2 bound to importin-α target proteins associated with carcinogenic pathways using Schrodinger software. The results showed that the phytochemicals, scilicet, stigmasterol, γ-sitosterol, octadecadienoic acid, and vitamin E, showed a good binding affinity with Glide scores in the range -2.845-4.018 kcal/mol. Overall, the findings support that the least investigated traditional edible medicinal mangrove-related S. maritima is high in pharmacologically active constituents and might be one of the finest sources of naturally derived molecules for drug development and delivery systems.
Collapse
Affiliation(s)
- Sampath Manojkumar
- Translational
Plant Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Murugesan Thandeeswaran
- Metabolomics/Proteomics
Facility, Bharathiar Cancer Theranostics Research Centre, RUSA 2.0, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | | - Annavi Arjunan
- Department
of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Manickam Muthuselvam
- Department
of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Giriraj Kalaiarasi
- Centre
for Material Chemistry, Department of Chemistry, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, Tamil Nadu, India
| | - Kapildev Gnanajothi
- Translational
Plant Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
3
|
Buathong R, Duangsrisai S. Plant ingredients in Thai food: a well-rounded diet for natural bioactive associated with medicinal properties. PeerJ 2023; 11:e14568. [PMID: 36879911 PMCID: PMC9985418 DOI: 10.7717/peerj.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/23/2022] [Indexed: 03/05/2023] Open
Abstract
Background Seeking cures for chronic inflammation-associated diseases and infectious diseases caused by critical human pathogens is challenging and time-consuming. Even as the research community searches for novel bioactive agents, consuming a healthy diet with functional ability might be an effective way to delay and prevent the progression of severe health conditions. Many plant ingredients in Thai food are considered medicinal, and these vegetables, herbs, and spices collectively possess multiple biological and pharmacological activities, such as anti-inflammatory, antimicrobial, antidiabetic, antipyretic, anticancer, hepatoprotective, and cardioprotective effects. Methodology In this review, the selected edible plants are unspecific to Thai food, but our unique blend of recipes and preparation techniques make traditional Thai food healthy and functional. We searched three electronic databases: PUBMED, Science Direct, and Google Scholar, using the specific keywords "Plant name" followed by "Anti-inflammatory" or "Antibacterial" or "Antiviral" and focusing on articles published between 2017 and 2021. Results Our selection of 69 edible and medicinal plant species (33 families) is the most comprehensive compilation of Thai food sources demonstrating biological activities to date. Focusing on articles published between 2017 and 2021, we identified a total of 245 scientific articles that have reported main compounds, traditional uses, and pharmacological and biological activities from plant parts of the selected species. Conclusions Evidence indicates that the selected plants contain bioactive compounds responsible for anti-inflammatory, antibacterial, and antiviral properties, suggesting these plants as potential sources for bioactive agents and suitable for consumption for health benefits.
Collapse
Affiliation(s)
- Raveevatoo Buathong
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sutsawat Duangsrisai
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
4
|
Mohamed NAF, Al-Touby SS, Hossain MA. Evaluation of cytotoxic and antioxidant activities of different polarities extracts of Suaeda maritima. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Akhtar MS, Rafiullah M, Shehata WA, Hossain A, Ali M. Comparative phytochemical, thin layer chromatographic profiling and antioxidant activity of extracts from some Indian herbal drugs. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
6
|
Todorović M, Zlatić N, Bojović B, Kanjevac M. Biological properties of selected Amaranthaceae halophytic species: A review. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e21229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
7
|
Javed B, Farooq F, Ibrahim M, Abbas HAB, Jawwad H, Zehra SS, Ahmad HM, Sarwer A, Malik K, Nawaz K. Antibacterial and antifungal activity of methanolic extracts of Salix alba L. against various disease causing pathogens. BRAZ J BIOL 2021; 83:e243332. [PMID: 34730611 DOI: 10.1590/1519-6984.243332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/30/2021] [Indexed: 11/21/2022] Open
Abstract
The present study was aimed to manifest the antibacterial and antifungal activity of methanolic extracts of Salix alba L. against seven Gram-positive and Gram-negative bacterial pathogens e.g. Streptococcus pyogenes, Staphylococcus aureus (1), S. aureus (2), Shigella sonnei, Escherichia coli (1), E. coli (2) and Neisseria gonorrhoeae and three fungal isolates from the air such as Aspergillus terreus, A. ornatus, and Rhizopus stolonifer. Two different serotypes of S. aureus and E. coli were used. The agar well-diffusion method results showed the dose-dependent response of plant extracts against bacterial and fungal strains while some organisms were found resistant e.g. E. coli (1), S. sonnei, A. terreus and R. stolonifer. The highest antibacterial activity was recorded at 17.000±1.732 mm from 100 mg/mL of leaves methanolic extracts against S. pyogenes while the activity of most of the pathogens decreased after 24 h of incubation. The highest antifungal activity was reported at 11.833±1.0 mm against A. ornatus at 50 mg/mL after 48 h of the incubation period. These experimental findings endorse the use of S. alba in ethnopharmacological formulations and suggest the use of methanolic extracts of the said plant to develop drugs to control the proliferation of resistant disease causing pathogenic microbes.
Collapse
Affiliation(s)
- B Javed
- University of Gujrat, Institute of Chemical & Biological Sciences, Department of Botany, Gujrat, Punjab, Pakistan.,Technological University Dublin, College of Sciences and Health, School of Food Science and Environmental Health, Dublin, Ireland
| | - F Farooq
- Government College University Lahore, Institute of Industrial Bio-Technology, Punjab, Pakistan
| | - M Ibrahim
- Services Institute of Medical Sciences, Lahore, Punjab, Pakistan
| | - H A B Abbas
- Fatima Jinnah Medical University, Lahore, Punjab, Pakistan
| | - H Jawwad
- Ziauddin University, Ziauddin Medical College, Karachi, Sindh, Pakistan
| | - S S Zehra
- The Islamia University of Bahawalpur, Department of Botany, Bahawalpur, Punjab, Pakistan
| | - H M Ahmad
- PMAS-Arid Agriculture University, Department of Forestry and Range Management, Rawalpindi, Punjab, Pakistan
| | - A Sarwer
- University of Gujrat, Nawaz Sharif Medical College, Gujrat, Punjab, Pakistan
| | - K Malik
- jPMAS-Arid Agriculture University, Department of Botany, Rawalpindi, Punjab, Pakistan
| | - K Nawaz
- University of Gujrat, Institute of Chemical & Biological Sciences, Department of Botany, Gujrat, Punjab, Pakistan
| |
Collapse
|
8
|
Engineering nanoscale hierarchical morphologies and geometrical shapes for microbial inactivation in aqueous solution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111844. [PMID: 33641886 DOI: 10.1016/j.msec.2020.111844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/29/2020] [Accepted: 12/27/2020] [Indexed: 01/09/2023]
Abstract
Here, we study the effect of hierarchical and one-dimensional (1D) metal oxide nanorods (H-NRs) such as γ-Al2O3, β-MnO2, and ZnO as microbial inhibitors on the antimicrobial efficiency in aqueous solution. These microbial inhibitors are fabricated in a diverse range of nanoscale hierarchical morphologies and geometrical shapes that have effective surface exposure, and well-defined 1D orientation. For instance, γ-Al2O3 H-NRs with 20 nm width and ˂0.5 μm length are grown dominantly in the [400] direction. The wurtzite structures of β-MnO2 H-NRs with 30 nm width and 0.5-1 μm length are preferentially oriented in the [100] direction. Longitudinal H-NRs with a width of 40 nm and length of 1 μm are controlled with ZnO wurtzite structure and grown in [0001] direction. The antimicrobial efficiency of H-NRs was evaluated through experimental assays using a set of microorganisms (Gram-positive Staphylococcus aureus, Bacillus thuriginesis, and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Minimal inhibitory and minimum bactericidal concentrations (MIC and MBC) were determined. These 1D H-NRs exhibited antibacterial activity against all the used strains. The active surface exposure sites of H-NRs play a key role in the strong interaction with the thiol units of vital bacterial enzymes, leading to microbial inactivation. Our finding indicates that the biological effect of the H-NR surface planes on microbial inhibition is decreased in the order of [400]-γ-Al2O3 > [100]-β-MnO2 > [0001]-ZnO geometrics. The lowest key values including MIC (1.146 and 0.250 μg/mL), MBC (1.146, 0.313 μg/mL), and MIC/MFC (0.375 and 0.375 μg/mL) are achieved for [400]-plane γ-Al2O3 surfaces when tested against Gram-positive and -negative bacteria, respectively. Among the three H-NRs, the smallest diameter size and length, the largest surface area, and the active exposure [400] direction of γ-Al2O3 H-NRs could provide the highest microbial inactivation.
Collapse
|
9
|
Javed B, Nawaz K, Munazir M. Phytochemical Analysis and Antibacterial Activity of Tannins Extracted from Salix alba L. Against Different Gram-Positive and Gram-Negative Bacterial Strains. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2020. [DOI: 10.1007/s40995-020-00937-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|