1
|
Sangseekew W, Ornnork N, Sornprachum T, Sirirak J, Lirdprapamongkol K, Boonsombat J, Svasti J, Keeratichamroen S. Unraveling the mechanism of the anticancer potential of emodin using 2D and spheroid models of A549 cells. Biochem Biophys Res Commun 2024; 736:150908. [PMID: 39476760 DOI: 10.1016/j.bbrc.2024.150908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/10/2024]
Abstract
The increasing global cancer burden necessitates the development of new treatment options. Herbal medicine offers a viable alternative to conventional cancer treatments. Numerous studies have shown that 3-dimensional (3D) cell culture more accurately represents tumor characteristics in vivo. Therefore, this study utilized tumor spheroids to explore the therapeutic efficacy of emodin, a natural product-derived bioactive agent. We investigated differences in chemotherapeutic response between A549 cells cultured in 2D versus spheroids, assessing key factors influencing cancer progression, including apoptosis, cell proliferation, cell cycle, migration and invasion. The findings revealed that spheroid cells displayed increased resistance to emodin compared to cells cultured in 2D. Emodin exhibited a more pronounced cytostatic effect in 2D cells, while its cytotoxic effect was more prominent in spheroid cells. Moreover, emodin treatment diminished the migratory and invasive capabilities of the cells. Mechanistic investigations indicated that emodin triggered apoptosis in A549 cells via the mitochondrial apoptotic pathway. Emodin-treated cells exhibited a significant reduction in the phosphorylation of key cancer progression pathways, including JAK2, STAT3, FAK, and ERK, compared to untreated controls. Molecular docking analysis confirmed the interactions of emodin with JAK2 and FAK. These findings suggest that the JAK2/STAT3 and FAK/ERK signaling pathways may serve as critical drivers of the therapeutic effectiveness of emodin in A549 cells.
Collapse
Affiliation(s)
- Wannapa Sangseekew
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Narittira Ornnork
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Thiwaree Sornprachum
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Kriengsak Lirdprapamongkol
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, 10400, Thailand
| | - Jutatip Boonsombat
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | | |
Collapse
|
2
|
Herrera-Ochoa D, Llano I, Ripoll C, Cybulski P, Kreuzer M, Rocha S, García-Frutos EM, Bravo I, Garzón-Ruiz A. Protein aggregation monitoring in cells under oxidative stress: a novel fluorescent probe based on a 7-azaindole-BODIPY derivative. J Mater Chem B 2024; 12:7577-7590. [PMID: 38984432 DOI: 10.1039/d4tb00567h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The development of new fluorescent probes as molecular sensors is a critical step for the understanding of molecular mechanisms. BODIPY-based probes offer versatility due to their high fluorescence quantum yields, photostability, and tunable absorption/emission wavelengths. Here, we report the synthesis and evaluation of a novel 7-azaindole-BODIPY derivative to probe hydrophobic proteins as well as protein misfolding and aggregation. In organic solvents, this compound shows two efficiently interconverting emissive excited states. In aqueous environments, it forms molecular aggregates with unique photophysical properties. The complex photophysics of the 7-azaindole-BODIPY derivative was explored for sensing applications. In the presence of albumin, the compound is stabilized in hydrophobic protein regions, significantly increasing its fluorescence emission intensity and lifetime. Similar effects occur in the presence of protein aggregates but not with other macromolecules like pepsin, DNA, Ficoll 40, and coconut oil. Fluorescence lifetime imaging microscopy (FLIM) and two-photon fluorescence microscopy on breast (MCF-7) and lung (A549) cancer cells incubated with this compound display longer fluorescence lifetimes and higher emission intensity under oxidative stress. Synchrotron FTIR micro spectroscopy confirmed that the photophysical changes observed were due to protein misfolding and aggregation caused by the oxidative stress. These findings demonstrate that this compound can serve as a fluorescent probe to monitor protein misfolding and aggregation triggered by oxidative stress.
Collapse
Affiliation(s)
- Diego Herrera-Ochoa
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| | - Iván Llano
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain.
| | - Consuelo Ripoll
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| | - Pierre Cybulski
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven Chem&Tech, Celestijnenlaan 200F, Leuven, 3001, Belgium.
| | - Martin Kreuzer
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Valles, 08290 Cerdanyola Del Vallès, Barcelona, Spain
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven Chem&Tech, Celestijnenlaan 200F, Leuven, 3001, Belgium.
| | - Eva M García-Frutos
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain.
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| |
Collapse
|
3
|
Saleh SAA, Shawky H, Ezzat A, Taie HAA, Salama B, El-Bassyouni GT, El Awdan SA, Awad GEA, Hashem AM, Esawy MA, Abdel Wahab WA. Prebiotic-mediated gastroprotective potentials of three bacterial levans through NF-κB-modulation and upregulation of systemic IL-17A. Int J Biol Macromol 2023; 250:126278. [PMID: 37572818 DOI: 10.1016/j.ijbiomac.2023.126278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
This study aimed to investigate whether the gastroprotective effects of three types of bacterial levans are correlated with their prebiotic-associated anti-inflammatory/antioxidant potentials. Three levans designated as LevAE, LevP, and LevZ were prepared from bacterial honey isolates; purified, and characterized using TLC, NMR, and FTIR. The anti-inflammatory properties of levan preparations were assessed in LPS-stimulated RAW 264.7 cell lines, while their safety and gastroprotective potentials were assessed in Wistar rats. The three levans significantly reduced ulcer number (22.29-70.05 %) and severity (31.76-80.54 %) in the ethanol-induced gastric ulcer model compared to the control (P < 0.0001/each), with the highest effect observed in LevAE and levZ (200 mg/each) (P < 0.0001). LevZ produced the highest levels of glutathione; catalase activity, and the lowest MDA levels (P = 0.0001/each). The highest anti-inflammatory activity was observed in LevAE and levZ in terms of higher inhibitory effect on IL-1β and TNF-α production (P < 0.0001 each); COX2, PGE2, and NF-κB gene expression. The three levan preparations also proved safe with no signs of toxicity, with anti-lipidemic properties as well as promising prebiotic activity that directly correlated with their antiulcer effect. This novel study highlights the implication of prebiotic-mediated systemic immunomodulation exhibited by bacterial levans that directly correlated with their gastroprotective activity.
Collapse
Affiliation(s)
- Shireen A A Saleh
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Heba Shawky
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Asmaa Ezzat
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Hanan A A Taie
- Plant Biochemistry Department, Agriculture and Biological Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Bassem Salama
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Gehan T El-Bassyouni
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Sally A El Awdan
- Pharmacology Department, Medical Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Ghada E A Awad
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Amal M Hashem
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Mona A Esawy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt.
| | - Walaa A Abdel Wahab
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| |
Collapse
|
4
|
Hamza AA, Heeba GH, Hassanin SO, Elwy HM, Bekhit AA, Amin A. Hibiscus-cisplatin combination treatment decreases liver toxicity in rats while increasing toxicity in lung cancer cells via oxidative stress- apoptosis pathway. Biomed Pharmacother 2023; 165:115148. [PMID: 37450997 DOI: 10.1016/j.biopha.2023.115148] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Cisplatin (CIS) is a broad-spectrum anti-carcinogen that causes cytotoxic effects both in normal and cancer cells. The purpose of this study was to test whether Hibiscus sabdariffa (HS) extract can reduce CIS-induced hepatotoxicity in rodents and to assess its anticancer activity in vitro. Treatment with HS extract at daily doses of 500 mg/kg before and after a single dose of CIS (10 mg/kg) reduced hepatotoxicity in Wistar male albino rats. HS extract reduced activity of hepatic damage marker enzymes ( i.e. alanine and aspartate aminotransferases), necrosis, and apoptosis in liver tissues of CIS-treated rats. This hepatic protection was associated with reduced oxidative stress in liver tissues. The antioxidant effects of HS were manifested as a normalization of malondialdehyde levels and glutathione levels which were all raised after CIS-induction. In addition, HS treatment resulted in a decrease of catalase, and superoxide dismutase activity. The combined effects of CIS and HS were also studied in two human lung cancer cell lines (A549 and H460). Treatment with HS (20 μg /mL) enhanced the cytotoxic activity of CIS both in A549 and H460 cell lines. Interestingly, HS increased CIS-induced apoptosis and oxidative stress more clearly in A549 cells indicating that HS extract in combination with CIS could increase the efficacy of CIS in the treatment of cancer.
Collapse
Affiliation(s)
- Alaaeldin Ahmed Hamza
- Biology Department, National Organization for Drug Control and Research, Giza 12611, Egypt.
| | - Gehan Hussein Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Soha Osama Hassanin
- Biochemistry Department, Modern University for Technology and information, Cairo 11585, Egypt
| | - Hanan Mohamed Elwy
- Analytical Chemistry Department, National Organization for Drug Control and Research, Giza 12611, Egypt
| | | | - Amr Amin
- Department of Biology, College of Science U.A.E. University, P.O. Box 15551, Al-Ain, UAE.
| |
Collapse
|
5
|
Mettwally WS, Gamal AA, Shams El-Din NG, Hamdy AA. Biological activities and structural characterization of sulfated polysaccharide extracted from a newly Mediterranean Sea record Grateloupia gibbesii Harvey. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Charoenwongpaiboon T, Wangpaiboon K, Septham P, Jiamvoraphong N, Issaragrisil S, Pichyangkura R, Lorthongpanich C. Production and bioactivities of nanoparticulated and ultrasonic-degraded levan generated by Erwinia tasmaniensis levansucrase in human osteosarcoma cells. Int J Biol Macromol 2022; 221:1121-1129. [PMID: 36115448 DOI: 10.1016/j.ijbiomac.2022.09.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022]
Abstract
Levan is a bioactive polysaccharide that can be synthesized by various microorganisms. In this study, the physicochemical properties and bioactivity of levan synthesized by recombinant levansucrase from Erwinia tasmaniensis were investigated. The synthesis conditions, including the enzyme concentration, substrate concentration, and temperature, were optimized. The obtained levan generally appeared as a cloudy suspension. However, it could transform into a hydrogel at concentrations exceeding 10 % (w/v). Then, ultrasonication was utilized to reduce the molecular weight and increase the bioavailability of levan. Dynamic light scattering (DLS) and gel permeation chromatography (GPC) indicated that the size of levan was significantly decreased by ultrasonication, whereas Fourier transform infrared spectroscopy, 1H-nuclear magnetic resonance, and X-ray powder diffraction revealed that the chemical structure of levan was not changed. Finally, the bioactivities of both levan forms were examined using human osteosarcoma (Saos-2) cells. The result clearly illustrated that sonicated levan had higher antiproliferative activity in Saos-2 cells than original levan. Sonicated levan also activated Toll-like receptor expression at the mRNA level. These findings suggested the important beneficial applications of sonicated levan for the development of cancer therapies.
Collapse
Affiliation(s)
| | - Karan Wangpaiboon
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prapasri Septham
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nittaya Jiamvoraphong
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
7
|
Evaluation of different bacterial honey isolates as probiotics and their efficient roles in cholesterol reduction. World J Microbiol Biotechnol 2022; 38:106. [PMID: 35507200 PMCID: PMC9068672 DOI: 10.1007/s11274-022-03259-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/28/2022] [Indexed: 11/03/2022]
Abstract
Continue to hypothesize that honey is a storehouse of beneficial bacteria, and the majority of these isolates are levansucrase producers. Accordingly, ten bacterial strains were isolated from different honey sources. Four honey isolates that had the highest levansucrase production and levan yield were identified by the partial sequencing of the 16S rRNA gene as Achromobacter sp. (10A), Bacillus paralicheniformis (2M), Bacillus subtilis (9A), and Bacillus paranthracis (13M). The cytotoxicity of the selected isolates showed negative blood hemolysis. Also, they are sensitive to the tested antibiotics (Amoxicillin + Flucloxacillin, Ampicillin, Gentamicin, Benzathine benzylpenicillin, Epicephin, Vancomycin, Amikacin, and Zinol). The isolates had strong alkaline stability (pHs 9, 11) and were resistant to severe acidic conditions (29-100 percent). The tested isolates recorded complete tolerance to both H2O2 and the bile salt (0.3% Oxgall powder) after 24 h incubation. The cell-free supernatant of the examined strains had antifungal activities against C. Albicans with varying degrees. Also, isolates 2M and 13M showed strong activities against S. aureus. The isolates showed strong adhesion and auto-aggregation capacity. Isolate 10A showed the highest antioxidant activity (91.45%) followed by 2M (47.37%). The isolates recorded different catalase and protease activity. All isolates produced cholesterol oxidase and lipase with different levels. Besides, the four isolates reduced LDL (low-density lipoprotein) to different significant values. The cholesterol-reducing ability varied not only for strains but also for the time of incubation. The previous results recommended these isolates be used safely in solving the LDL problem.
Collapse
|
8
|
Wangpaiboon K, Klaewkla M, Charoenwongpaiboon T, Vongkusolkit N, Panpetch P, Kuttiyawong K, Visessanguan W, Pichyangkura R. Synergistic enzyme cocktail between levansucrase and inulosucrase for superb levan-type fructooligosaccharide synthesis. Enzyme Microb Technol 2021; 154:109960. [PMID: 34923315 DOI: 10.1016/j.enzmictec.2021.109960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/17/2021] [Accepted: 12/04/2021] [Indexed: 11/24/2022]
Abstract
Inulosucrase (ISC) and levansucrase (LSC) utilise sucrose and produce inulin- and levan-type fructans, respectively. This study aims to propose a new strategy to improve levan-type fructooligosaccharide (L-FOS) production. The effect of ISC/ LSC -mixed reaction was elucidated on L-FOS production. The presence of ISC in the LSC reaction significantly leads to the higher production of L-FOSs as the main products. Furthermore, the different ratios between ISC and LSC affected the distribution of L-FOSs. A greater amount of ISC compared to LSC promoted the synthesis of short-chain L-FOSs. Conversely, when LSC was increased, the synthesis of longer-chain L-FOSs was enhanced. The addition of trisaccharide mixtures obtained from either a single ISC or LSC reaction could enhance L-FOSs synthesis in the LSC reaction. Analysis of these trisaccharides revealed that most species of the oligosaccharides were similar, with 1-kestose being the major one. The supplement of only 1-kestose in the LSC reaction showed similar results to those of the reaction in the presence of trisaccharide mixtures. Moreover, the results were supported by molecular dynamics simulations. This work not only provides an improvement in L-FOS production but also revealed and supported some insights into the mechanism of fructansucrases.
Collapse
Affiliation(s)
- Karan Wangpaiboon
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Methus Klaewkla
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Napas Vongkusolkit
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA
| | - Pawinee Panpetch
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kamontip Kuttiyawong
- Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Paholayothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
9
|
Gamal AA, Abbas HY, Abdelwahed NAM, Kashef MT, Mahmoud K, Esawy MA, Ramadan MA. Optimization strategy of Bacillus subtilis MT453867 levansucrase and evaluation of levan role in pancreatic cancer treatment. Int J Biol Macromol 2021; 182:1590-1601. [PMID: 34015407 DOI: 10.1016/j.ijbiomac.2021.05.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Pancreatic cancer is the fourth most lethal cancer type worldwide. Due to multiple levan applications including anticancer activities, studies related to levansucrase production are of interest. To our knowledge, levan effect on pancreatic cancer cells has not been tested previously. In this work, among eighteen bacterial honey isolates, Bacillus subtilis MT453867 showed the highest levan yield (33 g/L) and levansucrase production (8.31 U/mL). One-factor-at-a-time technique increased levansucrase activity by 60% when MgSO4 was eliminated. The addition of 60 g/L banana peels enhanced the enzyme activity (192 U/mL). Placket Burman design determined the media composition for maximum levan yield (54.8 g/L) and levansucrase production (505 U/mL). The identification of levan was confirmed by thin-layer chromatography, Fourier-Transform Infrared spectrometric analysis, 13C-nuclear-magnetic resonance, and 1H-nuclear-magnetic resonance. Both crude and dialyzed levan completely inhibited the pancreatic cancer cell line at 100 ppm with no cytotoxicity on the normal retinal cell line. The LD50 of crude levan was 4833 mg/kg body weight. Levan had strong antioxidant activity and significantly reduced the expression of CXCR4 and MCM7 genes in pancreatic cancer cells with significant DNA fragmentation. In conclusion, Bacillus subtilis MT453867 levan is a promising adjunct to pancreatic-anticancer agents with both anti-cancer and chemoprotective effects.
Collapse
Affiliation(s)
- Amira A Gamal
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth st.(former El Tahrir st.), P.O 12622, Dokki, Cairo, Egypt
| | - Heba Y Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City
| | - Nayera A M Abdelwahed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth st.(former El Tahrir st.), P.O 12622, Dokki, Cairo, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University
| | - Khaled Mahmoud
- Pharmacognosy Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth st.(former El Tahrir st.), P.O 12622, Dokki, Cairo, Egypt
| | - Mona A Esawy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth st.(former El Tahrir st.), P.O 12622, Dokki, Cairo, Egypt.
| | - Mohammed A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University
| |
Collapse
|