1
|
Hassane AMA, Eldiehy KSH, Saha D, Mohamed H, Mosa MA, Abouelela ME, Abo-Dahab NF, El-Shanawany ARA. Oleaginous fungi: a promising source of biofuels and nutraceuticals with enhanced lipid production strategies. Arch Microbiol 2024; 206:338. [PMID: 38955856 DOI: 10.1007/s00203-024-04054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Oleaginous fungi have attracted a great deal of interest for their potency to accumulate high amounts of lipids (more than 20% of biomass dry weight) and polyunsaturated fatty acids (PUFAs), which have a variety of industrial and biological applications. Lipids of plant and animal origin are related to some restrictions and thus lead to attention towards oleaginous microorganisms as reliable substitute resources. Lipids are traditionally biosynthesized intra-cellularly and involved in the building structure of a variety of cellular compartments. In oleaginous fungi, under certain conditions of elevated carbon ratio and decreased nitrogen in the growth medium, a change in metabolic pathway occurred by switching the whole central carbon metabolism to fatty acid anabolism, which subsequently resulted in high lipid accumulation. The present review illustrates the bio-lipid structure, fatty acid classes and biosynthesis within oleaginous fungi with certain key enzymes, and the advantages of oleaginous fungi over other lipid bio-sources. Qualitative and quantitative techniques for detecting the lipid accumulation capability of oleaginous microbes including visual, and analytical (convenient and non-convenient) were debated. Factors affecting lipid production, and different approaches followed to enhance the lipid content in oleaginous yeasts and fungi, including optimization, utilization of cost-effective wastes, co-culturing, as well as metabolic and genetic engineering, were discussed. A better understanding of the oleaginous fungi regarding screening, detection, and maximization of lipid content using different strategies could help to discover new potent oleaginous isolates, exploit and recycle low-cost wastes, and improve the efficiency of bio-lipids cumulation with biotechnological significance.
Collapse
Affiliation(s)
- Abdallah M A Hassane
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt.
| | - Khalifa S H Eldiehy
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| | - Debanjan Saha
- Department of Molecular Biology and Biotechnology, Tezpur University, P.O. Box 784028, Assam, India
| | - Hassan Mohamed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, P.O. Box 255000, Zibo, China
| | - Mohamed A Mosa
- Nanotechnology and Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, P.O. Box 12619, Giza, Egypt
| | - Mohamed E Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, P.O. Box 11884, Cairo, Egypt
| | - Nageh F Abo-Dahab
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| | - Abdel-Rehim A El-Shanawany
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| |
Collapse
|
3
|
Chen L, Yan W, Qian X, Chen M, Zhang X, Xin F, Zhang W, Jiang M, Ochsenreither K. Increased Lipid Production in Yarrowia lipolytica from Acetate through Metabolic Engineering and Cosubstrate Fermentation. ACS Synth Biol 2021; 10:3129-3138. [PMID: 34714052 DOI: 10.1021/acssynbio.1c00405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconversion of acetate, a byproduct generated in industrial processes, into microbial lipids using oleaginous yeasts offers a promising alternative for the economic utilization of acetate-containing waste streams. However, high acetate concentrations will inhibit microbial growth and metabolism. In this study, the acetate utilization capability of Yarrowia lipolytica PO1f was successively improved by overexpressing the key enzyme of acetyl-CoA synthetase (ACS), which resulted in an accumulation of 9.2% microbial lipids from acetate in shake flask fermentation. By further overexpressing the second key enzymes of acetyl-CoA carboxylase (ACC1) and fatty acid synthase (FAS) in Y. lipolytica, the lipid content was increased to 25.7% from acetate. Finally, the maximum OD600 of 29.2 and a lipid content of 41.7% were obtained with the engineered strain by the adoption of cosubstrate (glycerol and acetate) fed-batch fermentation, which corresponded to an increase of 68 and 95%, respectively. These results presented a promising strategy for economic and efficient microbial lipid production from the waste acetate.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Wei Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Xiujuan Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Minjiao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Xiaoyu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|