1
|
Bo Y, Niu Y, Zhu M, Wang Y, Wang Y, Su Y, Liu Q, Wang G, Wang Y. Elucidating the co-metabolism mechanism of 4-chlorophenol and 4-chloroaniline degradation by Rhodococcus through genomics and transcriptomics. ENVIRONMENTAL RESEARCH 2025; 274:121362. [PMID: 40073925 DOI: 10.1016/j.envres.2025.121362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Co-metabolism is an effective strategy for the removal of refractory pollutants during biodegradation. This study reports that Rhodococcus DCB-5 can utilize 4-chlorophenol as a growth substrate to initiate the co-metabolic degradation of 4-chloroaniline. Comprehensive analyses of the genome, transcriptome, enzymes, and intermediate products identified key genes and a putative co-metabolic degradation pathway involved in the degradation process by Rhodococcus. Under optimal co-metabolic degradation conditions of pH 7 and 35°C, strain DCB-5 completely degraded 4-chlorophenol at an initial concentration of 50 mg/L, and achieved a 65.82% degradation rate for 4-chloroaniline at an initial concentration of 100 mg/L. Genome analysis indicated that the strain has the potential to degrade chlorinated aromatic compounds. The genes gpx, ygjG, ugpE, afuB, tfdB, catB, catA, and glnA were identified as core genes involved in the co-metabolic degradation process. Analysis of degradation intermediates revealed that 4-chlorophenol promotes the expression of the aniline dioxygenase-related gene glnA, facilitating the metabolism of 4-chloroaniline. A potential co-metabolic degradation pathway for strain DCB-5 is proposed. These findings may have implications for sites co-contaminated with chlorophenols and chloramines.
Collapse
Affiliation(s)
- Yonglin Bo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yixue Niu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Mingjun Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yu Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Gang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Yongqiang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| |
Collapse
|
2
|
Kumar M, Saini HS. Deciphering Indigenous Bacterial Diversity of Co-Polluted Sites to Unravel Its Bioremediation Potential: A Metagenomic Approach. J Basic Microbiol 2024; 64:e2400303. [PMID: 38988320 DOI: 10.1002/jobm.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Polluted drains across the globe are affected due to reckless disposal of untreated industrial effluents resulting in significant water pollution affecting microbial community structure/dynamics. To elucidate this, polluted samples were collected from Budha Nala (BN) drain, Tung Dhab (TD) drain, and wastewater treatment plant (WWTP) receiving an inflow of organic pollutants as well as heavy metals due to anthropogenic activities. The sample of unpolluted pristine soil (PS) was used as control, as there is no history of usage of organic chemicals at this site. The bacterial diversity of these samples was sequenced using the Illumina MiSeq platform by amplifying the V3/V4 region of 16S rRNA. The majority of operational taxonomic unit (OTUs) at polluted sites belonged to phyla Proteobacteria specifically Gammaproteobacteria class, followed by Actinobacteria, Bacteriodetes, Chloroflexi, Firmicutes, Planctomycetes, WS6, and TM7, whereas unpolluted site revealed the prevalence of Proteobacteria followed by Actinobacteria, Planctomycetes, Firmicutes, Acidobacteria, Chloroflexi, Bacteroidetes, Verrucomicrobia, and Nitrospirae. The data sets decode unclassified species of the phyla Proteobacteria, Bacteriodetes, Chloroflexi, Firmicutes, and WS6, along with some unclassified bacterial species. The study provided a comparative study of changed microbial community structure, their possible functions across diverse geographical locations, and identifying specific bacterial genera as pollution bio-indicators of aged polluted drains.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
3
|
Ma Y, Li P, Zhang Y, Guo X, Song Y, Yake Zhang, Guo Q, Li H, Wang Y, Wan J. Characteristics and performance of algal-bacterial granular sludge in photo-sequencing batch reactors under various substrate loading rates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122216. [PMID: 39153323 DOI: 10.1016/j.jenvman.2024.122216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/20/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
The algae-bacterial granular sludge (ABGS) technology has garnered significant attention due to its remarkable attributes of low carbon emissions. To investigate the performance of the ABGS system under various substrate loading rates, the parallel photo-sequencing batch reactors (P1 and P2) were set up. The results indicated that chlorophyll-a content and extracellular polymeric substance content were measured at 10.7 ± 0.3 mg/L and 61.4 ± 0.7 mg/g SS in P1 under relatively low substrate loading rate (0.9 kg COD/m3/d and 0.09 kg N/m3/d). Moreover, kinetic study revealed that the maximal specific P uptake rate for P1 reached 0.21 mg P/g SS/h under light conditions, and it achieved 0.078 mg P/g SS/h under dark conditions, highlighting the significant role on phosphorus removal played by algae in the ABGS system. The microbial analysis and scanning electron microscopy confirmed that filamentous algae predominantly colonize the surface in P1, whereas spherical bacteria dominate the surface of granular sludge in P2. Additionally, a diverse array of microorganisms including bacteria, algae, and metazoa such as Rotifers and Nematodes were observed in both systems, providing evidence for the establishment of a symbiotic system. This study not only confirmed the ability of ABGS for efficient N and P removal under different substrate loading conditions but also highlighted its potential to enhance the ecological diversity of the reaction system.
Collapse
Affiliation(s)
- Yifei Ma
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Pei Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yabin Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiaoying Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yifan Song
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yake Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Qiong Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Haisong Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yan Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
4
|
Mahajan R, Sharma G, Chadha P, Saini HS. Evaluating efficacy of Pseudomonas sp. EN-4 to lower the toxic potential of 4-bromophenol and assessing its competency in simulated microcosm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123990. [PMID: 38631447 DOI: 10.1016/j.envpol.2024.123990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
An indigenous bacterium Pseudomonas sp. EN-4 had been reported earlier for its ability to co-metabolise 4-bromophenol (4-BP), in presence of phenol (100 mg/L) as co-substrate. The present study was undertaken to validate the efficacy of biotransformation by comparing the toxicity profiles of untreated and EN-4 transformed samples of 4-BP, using both plant and animal model. The toxicity studies in Allium cepa (A. cepa) indicated to lowering of mitotic index (MI) from 12.77% (water) to 3.33% in A. cepa bulbs exposed to 4-BP + phenol, which reflects the cytotoxic nature of these compounds. However, the MI value significantly improves to 11.36% in its biologically treated counterpart, indicating normal cell growth. This was further supported by significant reduction in chromosomal aberrations in A. cepa root cells exposed to biologically treated samples of 4-BP as compared to untreated controls. The oxidative stress assessed by comparing the activity profiles of different marker enzymes showed that the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and guaiacol peroxidase (GPX) were reduced by 56%, 72%, and 37% respectively, in EN-4 transformed samples of 4-BP + phenol compared to its untreated counterpart. Similar trends were evident in the comet assay of fish (Channa punctatus) blood cells exposed to untreated and biologically treated samples of 4-BP. The comparative studies showed significant reduction in tail length (72.70%) and % tail intensity (56.15%) in fish blood cells exposed to EN-4 treated 4-BP + phenol, compared to its untreated counterpart. The soil microcosm studies validated the competency of the EN-4 cells to establish and transform 4-BP in soil polluted with 4-BP (20 mg/kg) and 4-BP + phenol (20 + 100 mg/kg). The isolate EN-4 achieved 98.08% transformation of 4-BP in non-sterile microcosm supplemented with phenol, indicating to potential of EN-4 cells to establish along with indigenous microflora.
Collapse
Affiliation(s)
- Rohit Mahajan
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab-143005 India.
| | - Geetika Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab-143005 India.
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab-143005 India.
| | - Harvinder Singh Saini
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab-143005 India.
| |
Collapse
|
5
|
Kumar M, Saggu SK, Pratibha P, Singh SK, Kumar S. Exploring the role of microbes for the management of persistent organic pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118492. [PMID: 37384989 DOI: 10.1016/j.jenvman.2023.118492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Persistent organic pollutants (POPs) are chemicals which have been persisting in the environment for many years due to their longer half-lives. POPs have gained attention over the last few decades due to the unsustainable management of chemicals which led to their widespread and massive contamination of biota from different strata and environments. Due to the widespread distribution, bio-accumulation and toxic behavior, POPs have become a risk for organisms and environment. Therefore, a focus is required to eliminate these chemicals from the environment or transform into non-toxic forms. Among the available techniques for the removal of POPs, most of them are inefficient or incur high operational costs. As an alternative to this, microbial bioremediation of POPs such as pesticides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pharmaceuticals and personal care products is much more efficient and cost-effective. Additionally, bacteria play a vital role in the biotransformation and solubilization of POPs, which reduces their toxicity. This review specifies the Stockholm Convention that evaluates the risk profile for the management of existing as well as emerging POPs. The sources, types and persistence of POPs along with the comparison of conventional elimination and bioremediation methods of POPs are discussed comprehensively. This study demonstrates the existing bioremediation techniques of POPs and summaries the potential of microbes which serve as enhanced, cost-effective, and eco-friendly approach for POPs elimination.
Collapse
Affiliation(s)
- Manoj Kumar
- School of Allied and Healthcare Sciences, GNA University, Phagwara, Punjab, 144401, India
| | - Sandeep Kaur Saggu
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, 144004, India
| | - Pritu Pratibha
- Center for Excellence in Molecular Plant Science, Plant Stress Center, CAS, Shanghai, 201602, China
| | - Sunil Kumar Singh
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, 211002, India.
| | - Shiv Kumar
- Department of Microbiology, Guru Gobind Singh Medical College, Baba Farid University of Health Sciences, Faridkot, Punjab, 151203, India.
| |
Collapse
|
6
|
Sarkhandia S, Sharma G, Mahajan R, Koundal S, Kumar M, Chadha P, Saini HS, Kaur S. Synergistic and additive interactions of Shewanella sp., Pseudomonas sp. and Thauera sp. with chlorantraniliprole and emamectin benzoate for controlling Spodoptera litura (Fabricius). Sci Rep 2023; 13:14648. [PMID: 37669993 PMCID: PMC10480177 DOI: 10.1038/s41598-023-41641-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
The imprudent use of insecticides causes the development of resistance in insect pest populations, contamination of the environment, biological imbalance and human intoxication. The use of microbial pathogens combined with insecticides has been proposed as an alternative strategy for insect pest management. This IPM approach may offer effective ways to control pests, in addition to lowering the risk of chemical residues in the environment. Spodoptera litura (Fabricius) is a major pest of many crops like cotton, maize, tobacco, cauliflower, cabbage, and fodder crops globally. Here, we evaluated the combined effects of new chemistry insecticides (chlorantraniliprole and emamectin benzoate) and entomopathogenic bacterial strains, Shewanella sp. (SS4), Thauera sp. (M9) and Pseudomonas sp. (EN4) against S. litura larvae inducing additive and synergistic interactions under laboratory conditions. Both insecticides produced higher larval mortality when applied in combination with bacterial isolates having maximum mortality of 98 and 96% with LC50 of chlorantraniliprole and emamectin benzoate in combination with LC50 of Pseudomonas sp. (EN4) respectively. The lower concentration (LC20) of both insecticides also induced synergism when combined with the above bacterial isolates providing a valuable approach for the management of insect pests. The genotoxic effect of both the insecticides was also evaluated by conducting comet assays. The insecticide treatments induced significant DNA damage in larval hemocytes that further increased in combination treatments. Our results indicated that combined treatments could be a successful approach for managing S. litura while reducing the inappropriate overuse of insecticides.
Collapse
Affiliation(s)
- Sunaina Sarkhandia
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Geetika Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rohit Mahajan
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Satish Koundal
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Manoj Kumar
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Harvinder Singh Saini
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sanehdeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
7
|
Koundal S, Sharma K, Dhammi P, Chadha P, Saini HS. Development and operation of immobilized cell plug flow bioreactor (PFR) for treatment of textile industry effluent and evaluation of its working efficiency. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11458-11472. [PMID: 36094713 DOI: 10.1007/s11356-022-22928-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The release of untreated/partially treated effluent and solid waste from textile dyeing industries, having un-reacted dyes, their hydrolysed products and high total dissolved solids (TDS) over the period of time had led to the deterioration of ecological niches. In an endeavour to develop a sustainable and effective alternative to conventional approaches, a plug flow reactor (PFR) having immobilized cells of consortium of three indigenous bacterial isolates was developed. The reactor was fed with effluent collected from the equalization tank of a textile processing unit located near city of Amritsar, Punjab (India). The PFR over a period of 3 months achieved 97.98 %, 82.22 %, 87.36%, 77.71% and 68.75% lowering of colour, chemical oxygen demand (COD), biological oxygen demand (BOD), total dissolved solids (TDS) and total suspended solids (TSS) respectively. The comparison of the phytotoxicity and genotoxicity of untreated and PFR-treated output samples using plant and animal models indicated significant lowering of respective toxicity potential. This is a first report, as per best of our knowledge, regarding direct treatment of textile industry effluent without any pre-treatment and with minimal nutritional inputs, which can be easily integrated into already existing treatment plant. The successful implementation of this system will lower the cost of coagulants/flocculants and also lowering the sludge generation.
Collapse
Affiliation(s)
- Satish Koundal
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Khushboo Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Prince Dhammi
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Harvinder Singh Saini
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
8
|
Femina Carolin C, Senthil Kumar P, Chitra B, Fetcia Jackulin C, Ramamurthy R. Stimulation of Bacillus sp. by lipopeptide biosurfactant for the degradation of aromatic amine 4-Chloroaniline. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125716. [PMID: 34088195 DOI: 10.1016/j.jhazmat.2021.125716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
This study aims to reveal that the biosurfactant act as a stimulant in aromatic amine 4-Chloroaniline (4-CA) degradation. Isolated degrading strain Bacillus sp. was used for the production of biosurfactant with help of substrate such as engine oil. The surfactant production by the strain was studied by using various screening methods and the results showed best emulsification activity (75%), surface tension reduction activity (28.6 mNm-1) and oil spreading activity (5.9 cm). The obtained surfactant was characterized using Fourier transform infrared spectroscopy (FT-IR), Gas chromatography-Mass Spectrometry (GC-MS), Matrix-Assisted Laser Desorption/ Ionization Time of Flight (MALDI-TOF) which confirmed that the nature of surfactant is lipopeptide. The maximum removal of 4-CA was achieved in different environmental conditions at concentration 100 mg L-1, neutral pH and temperature 30 °C. In the degradation studies, the 4-CA was removed upto 76% by Bacillus sp but in the presence of lipopeptide surfactant, the Bacillus sp removed 4-CA upto 100%. The degraded metabolites were further characterized using High-Pressure Liquid Chromatography (HPLC) and GC-MS. This research indicated that strain Bacillus sp along with the lipopeptide biosurfactant possesses higher potential in the bioremediation of 4-CA compound from the environment.
Collapse
Affiliation(s)
- C Femina Carolin
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, India.
| | - B Chitra
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, India
| | - C Fetcia Jackulin
- Department of Chemical Engineering, Adhiyamaan College of Engineering (Autonomous), Hosur 635130, Tamil Nadu, India
| | - Racchana Ramamurthy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, India; Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, PO Box 3015, 2601 DA Delft, The Netherlands
| |
Collapse
|
9
|
Liu H, Lin H, Song B, Sun X, Xu R, Kong T, Xu F, Li B, Sun W. Stable-isotope probing coupled with high-throughput sequencing reveals bacterial taxa capable of degrading aniline at three contaminated sites with contrasting pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144807. [PMID: 33548700 DOI: 10.1016/j.scitotenv.2020.144807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The biodegradation of aniline is an important process related to the attenuation of aniline pollution at contaminated sites. Aniline contamination could occur in various pH (i.e., acidic, neutral, and alkaline) environments. However, little is known about preferred pH conditions of diverse aniline degraders at different sites. This study investigated the active aniline degraders present under contrasting pH environments using three aniline-contaminated cultures, namely, acidic sludge (ACID-S, pH 3.1), neutral river sediment (NEUS, pH 6.6), and alkaline paddy soil (ALKP, pH 8.7). Here, DNA-based stable isotope probing coupled with high-throughput sequencing revealed that aniline degradation was associated with Armatimonadetes sp., Tepidisphaerales sp., and Rhizobiaceae sp. in ACID-S; Thauera sp., Zoogloea sp., and Acidovorax sp. in NEUS; Delftia sp., Thauera sp., and Nocardioides sp. in ALKP. All the putative aniline-degrading bacteria identified were present in the "core" microbiome of these three cultures; however, only an appropriate pH may facilitate their ability to metabolize aniline. In addition, the biotic interactions between putative aniline-degrading bacteria and non-direct degraders showed different characteristics in three cultures, suggesting aniline-degrading bacteria employ diverse survival strategies in different pH environments. These findings expand our current knowledge regarding the diversity of aniline degraders and the environments they inhabit, and provide guidance related to the bioremediation of aniline contaminated sites with complex pH environments.
Collapse
Affiliation(s)
- Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Benru Song
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fuqing Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|