1
|
Almutary AG, Begum MY, Siddiqua A, Gupta S, Chauhan P, Wadhwa K, Singh G, Iqbal D, Padmapriya G, Kumar S, Kedia N, Verma R, Kumar R, Sinha A, Dheepak B, Abomughaid MM, Jha NK. Unlocking the Neuroprotective Potential of Silymarin: A Promising Ally in Safeguarding the Brain from Alzheimer's Disease and Other Neurological Disorders. Mol Neurobiol 2025; 62:7975-7997. [PMID: 39956886 DOI: 10.1007/s12035-024-04654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/02/2024] [Indexed: 02/18/2025]
Abstract
Medicinal plants and their phytochemicals have been extensively employed worldwide for centuries to address a diverse range of ailments, boasting a history that spans several decades. These plants are considered the source of numerous medicinal compounds. For instance, silymarin is a polyphenolic flavonoid extract obtained from the milk thistle plant or Silybum marianum which has been shown to have significant neuroprotective effects and great therapeutic benefits. Neurodegenerative diseases (NDs) are a class of neurological diseases that have become more prevalent in recent years, and although treatment is available, there is no complete cure developed yet. Silymarin utilizes a range of molecular mechanisms, including modulation of MAPK, AMPK, NF-κB, mTOR, and PI3K/Akt pathways, along with various receptors, enzymes, and growth factors. These mechanisms collectively contribute to its protective effects against NDs such as Alzheimer's disease, Parkinson's disease, and depression. Despite its safety and efficacy, silymarin faces challenges related to bioavailability and aqueous solubility, hindering its development as a clinical drug. This review highlights the molecular mechanisms underlying silymarin's neuroprotective effects, suggesting its potential as a promising therapeutic strategy for NDs.
Collapse
Affiliation(s)
- Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Saurabh Gupta
- Deparment of Biotechnology, GLA University, Mathura, India
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia
| | - Gopalakrishnan Padmapriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Sanjay Kumar
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Navin Kedia
- NIMS School of Civil Engineering, NIMS University Rajasthan, Jaipur, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges Jhanjeri, Mohali, 140307, Punjab, India
| | - Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Department of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - B Dheepak
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Niraj Kumar Jha
- Department of Biotechnology & Bioengineering, School of Biosciences & Technology, Galgotias University, Greater Noida, Uttar Pradesh, 203201, India.
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
2
|
Iqbal T, Aslam T, Zulfiqar S, Faisal N, Rehman AU, Aslam S, Rehman R. Exploring Silybum marianum L. seeds from Pakistan for its antibacterial, antioxidant, antidiabetic activities, and phytochemical analysis. Nat Prod Res 2025:1-7. [PMID: 40079064 DOI: 10.1080/14786419.2025.2475506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 02/15/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
In this study, various extracts, including methanol (SMLM), hydro-ethanol (SMLE), n-hexane (SMLH), and aqueous (SMLA) were formulated from the seeds of Silybum marianum L. and subjected to phytochemical assessment, HPLC, FTIR analysis, and different in vitro bioassays. The qualitative analysis revealed the presence of all representative groups, except alkaloids, in the samples. The quantitative examination indicated that the SMLE extract exhibited the highest total flavonoid contents and highest entire phenolic concentrations. HPLC analysis of the SMLM extract identified chlorogenic acid, gallic acid, kaempferol, benzoic acid and HB acid which were reported for the first time from S. marianum. In terms of antibacterial activity, the SMLH extract demonstrated a significant zone of inhibition (34 ± 0.5 mm) against Gram-positive bacterial species, Staphylococcus aureus. In antioxidant assays, the SMLM extract displayed the highest scavenging potential against DPPH radicals and exhibited a significant IC50 of 4.8 ± 1.2 μg/mL, indicating notable efficacy. Subsequently, the SMLE extract demonstrated an IC50 of 20.17 ± 0.4 μg/mL. In the context of antidiabetic evaluation, the SMLM extract displayed the highest effectiveness, revealing an IC50 value of 5.2 ± 0.07 μg/mL. To conclude, the assessed samples, such as the SMLM and SMLE extracts, exhibit remarkable capabilities in the studied activities, potentially attributed to the existence of bioactive compounds.
Collapse
Affiliation(s)
- Tahira Iqbal
- Department of Biochemistry, Faculty of Sciences, University Medical and Dental College, The University of Faisalabad, Faisalabad, Pakistan
| | - Tanzeela Aslam
- Department of Biochemistry, Faculty of Sciences, University Medical and Dental College, The University of Faisalabad, Faisalabad, Pakistan
| | - Saba Zulfiqar
- Department of Biochemistry, Faculty of Sciences, University Medical and Dental College, The University of Faisalabad, Faisalabad, Pakistan
| | - Nabeela Faisal
- Department of Biochemistry, Faculty of Sciences, University Medical and Dental College, The University of Faisalabad, Faisalabad, Pakistan
| | - Aneeq Ur Rehman
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Sabeen Aslam
- Department of Chemistry, Faculty of Sciences, University of Okara, Okara, Pakistan
| | - Rafia Rehman
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
3
|
Wang Y, Li L, He J, Sun B. Extract of Silybum marianum (L.) Gaertn Leaves as a Novel Green Corrosion Inhibitor for Carbon Steel in Acidic Solution. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4794. [PMID: 39410365 PMCID: PMC11477669 DOI: 10.3390/ma17194794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
In this work, leaves of Silybum marianum (L.) Gaertn were extracted by a one-step extraction method using ethanol as a solvent, and the Silybum marianum (L.) Gaertn extract (SMGE) was firstly employed as a green corrosion inhibitor for carbon steel in 0.5 mol/L H2SO4. The corrosion inhibition performance was studied using weight loss and electrochemical methods, and the anti-corrosion mechanism of SMGE is further analyzed through some surface characterizations and theoretical calculations. The results indicate that SMGE can act as a mixed-type corrosion inhibitor and possess superior corrosion inhibition performance for carbon steel in H2SO4 solution, and the optimum corrosion inhibition efficiency reached 93.06% at 800 ppm SMGE combined with 60 ppm KI. The corrosion inhibition efficiency increased with the rising inhibitor concentration. Surface characterizations illustrated that the inhibitor could physico-chemically adsorb on a metal surface, forming a hydrophobic, protective film.
Collapse
Affiliation(s)
- Yubin Wang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
- CNPC Engineering Technology Research Co., Ltd., Tianjin 300451, China
| | - Lingjie Li
- CNPC Engineering Technology Research Co., Ltd., Tianjin 300451, China
| | - Jinbei He
- Hubei Jingyu Material Co., Ltd., Wuhan 430073, China
| | - Baojiang Sun
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
4
|
Prashant SP, Bhawana M. An update on biotechnological intervention mediated by plant tissue culture to boost secondary metabolite production in medicinal and aromatic plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14400. [PMID: 38945697 DOI: 10.1111/ppl.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024]
Abstract
Since prehistoric times, medicinal and aromatic plants (MAPs) have been employed for various therapeutic purposes due to their varied array of pharmaceutically relevant bioactive compounds, i.e. secondary metabolites. However, when secondary metabolites are isolated directly from MAPs, there is occasionally very poor yield and limited synthesis of secondary metabolites from particular tissues and certain developmental stages. Moreover, many MAPs species are in danger of extinction, especially those used in pharmaceuticals, as their natural populations are under pressure from overharvesting due to the excess demand for plant-based herbal remedies. The extensive use of these metabolites in a number of industrial and pharmaceutical industries has prompted a call for more research into increasing the output via optimization of large-scale production using plant tissue culture techniques. The potential of plant cells as sources of secondary metabolites can be exploited through a combination of product recovery technology research, targeted metabolite production, and in vitro culture establishment. The plant tissue culture approach provides low-cost, sustainable, continuous, and viable secondary metabolite production that is not affected by geographic or climatic factors. This study covers recent advancements in the induction of medicinally relevant metabolites, as well as the conservation and propagation of plants by advanced tissue culture technologies.
Collapse
Affiliation(s)
- Shera Pandit Prashant
- Department of Environmental Sciences, Central University of Himachal Pradesh (CUHP), Kangra, Shahpur, Himachal Pradesh
| | - Mishra Bhawana
- Department of Environmental Sciences, Central University of Himachal Pradesh (CUHP), Kangra, Shahpur, Himachal Pradesh
| |
Collapse
|
5
|
Maaloul S, Ghzaiel I, Mahmoudi M, Mighri H, Pires V, Vejux A, Martine L, de Barros JPP, Prost-Camus E, Boughalleb F, Lizard G, Abdellaoui R. Characterization of Silybum marianum and Silybum eburneum seed oils: Phytochemical profiles and antioxidant properties supporting important nutritional interests. PLoS One 2024; 19:e0304021. [PMID: 38875282 PMCID: PMC11178192 DOI: 10.1371/journal.pone.0304021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/03/2024] [Indexed: 06/16/2024] Open
Abstract
Milk thistle seed oil is still not a well-known edible oil. Silybum marianum (milk thistle), is present in several countries and is the only known representative of the genus Silybum. However, Silybum eburneum, which is an endemic plant in Spain, Kenya, Morocco, Algeria, and Tunisia, is considered a marginalized species. The present work is the first report that gives information on the lipid and phenolic profiles of Tunisian S. eburneum seed oil compared to those of Tunisian S. marianum seed oil. In addition, the antioxidant properties of these oils were determined with DPPH, FRAP, and KRL assays, and their ability to prevent oxidative stress was determined on human monocytic THP-1 cells. These oils are characterized by high amounts of unsaturated fatty acids; linoleic acid and oleic acid are the most abundant. Campesterol, sitosterol, stigmasterol, and β-amyrin were the major phytosterols identified. α-tocopherol was the predominant tocopherol found. These oils also contain significant amounts of phenolic compounds. The diversity and richness of Silybum marianum and Silybum eburneum seed oils in unsaturated fatty acids, phenolic compounds, and tocopherols are associated with high antioxidant activities revealed by the DPPH, FRAP, and KRL assays. In addition, on THP-1 cells, these oils powerfully reduced the oxidative stress induced by 7-ketocholesterol and 7β-hydroxycholesterol, two strongly pro-oxidant oxysterols often present at increased levels in patients with age-related diseases. Silybum marianum and Silybum eburneum seed oils are therefore important sources of bioactive molecules with nutritional interest that prevent age-related diseases, the frequency of which is increasing in all countries due to the length of life expectancy.
Collapse
Affiliation(s)
- Samah Maaloul
- Laboratory of Rangeland Ecosystems and Valorisation of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Imen Ghzaiel
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) University of Bourgogne/Inserm, Dijon, France
- University Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, Clermont-Ferrand, France
| | - Maher Mahmoudi
- Laboratory of Rangeland Ecosystems and Valorisation of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- Laboratory of Plant, Soil and Environement Interactions (LR21ES01)-University of Tunis El-Manar, Faculty of Sciences of Tunis, El-Manar, Tunis, Tunisia
- Laboratory of Functional Physiology and Valorization of Bio-Ressources, Higher Institute of Biotechnology of Beja (LR23ES08), University of Jendouba, Jendouba, Tunisia
| | - Hédi Mighri
- Laboratory of Rangeland Ecosystems and Valorisation of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Vivien Pires
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) University of Bourgogne/Inserm, Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Anne Vejux
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) University of Bourgogne/Inserm, Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | | | | | | | - Fayçal Boughalleb
- Laboratory of Rangeland Ecosystems and Valorisation of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Gérard Lizard
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) University of Bourgogne/Inserm, Dijon, France
| | - Raoudha Abdellaoui
- Laboratory of Rangeland Ecosystems and Valorisation of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| |
Collapse
|
6
|
Neelab, Zeb A, Jamil M. Milk thistle protects against non-alcoholic fatty liver disease induced by dietary thermally oxidized tallow. Heliyon 2024; 10:e31445. [PMID: 38818175 PMCID: PMC11137523 DOI: 10.1016/j.heliyon.2024.e31445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic condition caused by several factors including thermally oxidized tallow. Various strategies have been considered to ameliorate NAFLD. However, the role of milk thistle (MT) in ameliorating NAFLD caused by thermally oxidized tallow has not been reported. The purpose of this study was to evaluate the ability of milk thistle to protect rabbits from the toxicity of oxidized tallow (OT). The rabbits were given OT and an extract of MT. The composition of MT was analyzed using HPLC-DAD, and tallow samples were studied using GC-MS. The study also examined liver histology, antioxidant levels, liver-related inflammatory markers, and serum lipid profile. The results showed that the major components of the MT extract were silybin B, formononetin-glucuronic acid, proanthocyanidin B1, silychristin B, silydianin, and isosilybin A. The group given OT showed elevated lipid profiles, lower antioxidant status, higher levels of hepatic inflammatory markers, and lower levels of anti-inflammatory markers. This group also had higher fat storage in the liver compared to the control or treatment groups. However, when MT was supplemented, the pro-inflammatory cytokines (IL-1, IL-4, IL-6, and TNF-α) and antioxidant status (CAT, SOD, GSH-Px, GSH, and TBARS) of the liver returned to normal. This suggests that MT extract is an excellent source of hepatoprotective compounds. It protects the liver by increasing antioxidant enzymes, decreasing pro-inflammatory cytokines, and increasing anti-inflammatory markers.
Collapse
Affiliation(s)
- Neelab
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Alam Zeb
- The Bioactive Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| | - Muhammad Jamil
- Department of Surgery, Timergara Teaching Hospital, Timergara, Pakistan
| |
Collapse
|
7
|
Börklü Budak T. Adsorption of Basic Yellow 28 and Basic Blue 3 Dyes from Aqueous Solution Using Silybum Marianum Stem as a Low-Cost Adsorbent. Molecules 2023; 28:6639. [PMID: 37764414 PMCID: PMC10536612 DOI: 10.3390/molecules28186639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In the present study, the ability of an adsorbent (SLM Stem) obtained from the stem of the Silybum Marianum plant to treat wastewater containing the cationic dyes basic blue 3 (BB3) and basic yellow 28 (BY28) from aqueous solutions was investigated using a batch method. Then, the SLM Stem (SLM Stem-Natural) adsorbent was carbonized at different temperatures (200-900 °C) and the removal capacity of the products obtained for both dyes was examined again. The investigation continued with the product carbonized at 800 °C (SLM Stem-800 °C), the adsorbent with the highest removal capacity. The dyestuff removal studies were continued with the SLM Stem-Natural and SLM Stem-800 °C adsorbents because they had the highest removal values. The surface properties of these two adsorbents were investigated using IR, SEM, and XRD measurements. It was determined that the SLM Stem-Natural has mainly non-porous material, and the SLM Stem-800 °C has a microporous structure. The optimal values for various parameters, including adsorbent amount, initial dye solution concentration, contact time, temperature, pH, and agitation speed, were investigated for BY28 dye and were 0.05 g, 15 mg/L, 30 min, 40 °C, pH 6 and 100 rpm when SLM Stem-Natural adsorbent was used and, 0.15 g, 30 mg/L, 30 min, 40 °C, pH 10, and 150 rpm when SLM Stem-800 °C adsorbent was used. For BB3 dye, optimal parameter values of 0.20 g, 10 mg/L, 30 min, 25 °C, pH 7, and 100 rpm were obtained when SLM Stem-Natural adsorbent was used and 0.15 g, 15 mg/L, 40 min, 40 °C, pH 10, and 100 rpm when SLM Stem-800 °C adsorbent was used. The Langmuir isotherm described the adsorption process best, with a value of r2 = 0.9987. When SLM Stem-800 °C adsorbent was used for BY28 dye at 25 °C, the highest qm value in the Langmuir isotherm was 271.73 mg/g. When the study was repeated with actual water samples under optimum conditions, the highest removal for the BY28 dye was 99.9% in tap water with the SLM Stem-800 °C adsorbent. Furthermore, the reuse study showed the adsorbent's efficiency even after three repetitions.
Collapse
Affiliation(s)
- Türkan Börklü Budak
- Department of Chemistry, Faculty of Art and Science, Yildiz Technical University, 34220 Istanbul, Turkey
| |
Collapse
|
8
|
Raclariu-Manolică AC, Socaciu C. Detecting and Profiling of Milk Thistle Metabolites in Food Supplements: A Safety-Oriented Approach by Advanced Analytics. Metabolites 2023; 13:440. [PMID: 36984880 PMCID: PMC10052194 DOI: 10.3390/metabo13030440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Milk thistle (Silybum marianum (L.) Gaertn.) is among the top-selling botanicals used as a supportive treatment for liver diseases. Silymarin, a mixture of unique flavonolignan metabolites, is the main bioactive component of milk thistle. The biological activities of silymarin have been well described in the literature, and its use is considered safe and well-tolerated in appropriate doses. However, commercial preparations do not always contain the recommended concentrations of silymarin, failing to provide the expected therapeutic effect. While the poor quality of raw material may explain the low concentrations of silymarin, its deliberate removal is suspected to be an adulteration. Toxic contaminants and foreign matters were also detected in milk thistle preparations, raising serious health concerns. Standard methods for determination of silymarin components include thin-layer chromatography (TLC), high-performance thin-layer chromatography (HPTLC), and high-performance liquid chromatography (HPLC) with various detectors, but nuclear magnetic resonance (NMR) and ultra-high-performance liquid chromatography (UHPLC) have also been applied. This review surveys the extraction techniques of main milk thistle metabolites and the quality, efficacy, and safety of the derived food supplements. Advanced analytical authentication approaches are discussed with a focus on DNA barcoding and metabarcoding to complement orthogonal chemical characterization and fingerprinting of herbal products.
Collapse
Affiliation(s)
- Ancuța Cristina Raclariu-Manolică
- Stejarul Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, 610004 Piatra Neamț, Romania
| | - Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- BIODIATECH—Research Center for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life (Basel) 2023; 13:life13030706. [PMID: 36983860 PMCID: PMC10051737 DOI: 10.3390/life13030706] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Several environmental stresses, including biotic and abiotic factors, adversely affect the growth and development of crops, thereby lowering their yield. However, abiotic factors, e.g., drought, salinity, cold, heat, ultraviolet radiations (UVr), reactive oxygen species (ROS), trace metals (TM), and soil pH, are extremely destructive and decrease crop yield worldwide. It is expected that more than 50% of crop production losses are due to abiotic stresses. Moreover, these factors are responsible for physiological and biochemical changes in plants. The response of different plant species to such stresses is a complex phenomenon with individual features for several species. In addition, it has been shown that abiotic factors stimulate multi-gene responses by making modifications in the accumulation of the primary and secondary metabolites. Metabolomics is a promising way to interpret biotic and abiotic stress tolerance in plants. The study of metabolic profiling revealed different types of metabolites, e.g., amino acids, carbohydrates, phenols, polyamines, terpenes, etc, which are accumulated in plants. Among all, primary metabolites, such as amino acids, carbohydrates, lipids polyamines, and glycine betaine, are considered the major contributing factors that work as osmolytes and osmoprotectants for plants from various environmental stress factors. In contrast, plant-derived secondary metabolites, e.g., phenolics, terpenoids, and nitrogen-containing compounds (alkaloids), have no direct role in the growth and development of plants. Nevertheless, such metabolites could play a significant role as a defense by protecting plants from biotic factors such as herbivores, insects, and pathogens. In addition, they can enhance the resistance against abiotic factors. Therefore, metabolomics practices are becoming essential and influential in plants by identifying different phytochemicals that are part of the acclimation responses to various stimuli. Hence, an accurate metabolome analysis is important to understand the basics of stress physiology and biochemistry. This review provides insight into the current information related to the impact of biotic and abiotic factors on variations of various sets of metabolite levels and explores how primary and secondary metabolites help plants in response to these stresses.
Collapse
|
10
|
Abdulmajeed AM, Alharbi BM, Alharby HF, Abualresh AM, Badawy GA, Semida WM, Rady MM. Simultaneous Action of Silymarin and Dopamine Enhances Defense Mechanisms Related to Antioxidants, Polyamine Metabolic Enzymes, and Tolerance to Cadmium Stress in Phaseolus vulgaris. PLANTS (BASEL, SWITZERLAND) 2022; 11:3069. [PMID: 36432798 PMCID: PMC9692805 DOI: 10.3390/plants11223069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Silymarin (Sm) and dopamine (DA) act synergistically as potential antioxidants, mediating many physiological and biochemical processes. As a first report, we investigated the synergistic effect of Sm and DA in mitigating cadmium stress in Phaseolus vulgaris plants. Three experiments were conducted simultaneously using 40 cm diameter pots to elucidate how Sm and DA affect cadmium tolerance traits at morphological, physiological, and biochemical levels. Cadmium stress triggered a marked reduction in growth, productivity, and physio-biochemical characteristics of common bean plants compared to unstressed plants. Seed priming (SP) and foliar spraying (FS) with silymarin (Sm) or dopamine (DA) ((DA (SP) + Sm (FS) and Sm (SP) + DA (FS)) ameliorated the damaging effects of cadmium stress. Sm seed priming + DA foliar spraying (Sm (SP) + DA (FS)) was more efficient. The treated stressed common bean plants showed greater tolerance to cadmium stress by diminishing oxidative stress biomarkers (i.e., O2•-, H2O2, and MDA) levels through enhanced enzymatic (SOD, CAT, POD, APX) and non-enzymatic (ascorbic acid, glutathione, α-tocopherol, choline, phenolics, flavonoids) antioxidant activities and osmoprotectants (proline, glycine betaine, and soluble sugars) contents, as well as through improved photosynthetic efficiency (total chlorophyll and carotenoids contents, photochemical activity, and efficiencies of carboxylation (iCE) and PSII (Fv/Fm)), polyamines (Put, Spd, and Spm), and polyamine metabolic enzymes (ADC and ODC) accumulation. These findings signify that Sm and DA have remarkable anti-stress effects, which can help regulate plant self-defense systems, reflecting satisfactory plant growth and productivity. Thus, realizing the synergistic effect of Sm and DA in cadmium tolerance confers potential new capabilities for these compounds to function in sustainable agriculture.
Collapse
Affiliation(s)
- Awatif M. Abdulmajeed
- Biology Department, Faculty of Science, University of Tabuk, Umluj 46429, Saudi Arabia
| | - Basmah M. Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amani M. Abualresh
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ghada A. Badawy
- Biology Department, Faculty of Science, University of Tabuk, Umluj 46429, Saudi Arabia
| | - Wael M. Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
11
|
Milovanovic S, Lukic I, Stamenic M, Kamiński P, Florkowski G, Tyśkiewicz K, Konkol M. The effect of equipment design and process scale-up on supercritical CO2 extraction: Case study for Silybum marianum seeds. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Mirzabe AH, Hajiahmad A, Fadavi A, Rafiee S. Design of nutrient gas-phase bioreactors: a critical comprehensive review. Bioprocess Biosyst Eng 2022; 45:1239-1265. [PMID: 35562481 DOI: 10.1007/s00449-022-02728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
To reach an efficient and economical gas-phase bioreactor is still one of the most critical challenges in biotechnology engineering. The numerous advantages of gas-phase bioreactors (GPBs) as well as disadvantages of these bioreactors should be exactly recognized, and efforts should be made to eliminate these defects. The first step in upgrading these bioreactors is to identify their types and the results of previous research. In the present work, a summary of the studies carried out in the field of cultivation in these bioreactors, their classification, their components, their principles and relations governing elements, modeling them, and some of their inherent engineering aspects are presented. Literature review showed that inoculation of shoots, roots, adventurous roots, callus, nodal explants, anther, nodal segment, somatic embryo, hairy roots, and fungus is reported in 15, 2, 2, 2, 3, 2, 1, 1, 37, and 5 cases, respectively.
Collapse
Affiliation(s)
- Amir Hossein Mirzabe
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran
| | - Ali Hajiahmad
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran. .,Department of Mechanical Engineering of Biosystems, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Alborz, Iran.
| | - Ali Fadavi
- Department of Food Technology, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Shahin Rafiee
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran
| |
Collapse
|
13
|
David Troncoso F, Alberto Sánchez D, Luján Ferreira M. Production of Plant Proteases and New Biotechnological Applications: An Updated Review. ChemistryOpen 2022; 11:e202200017. [PMID: 35286022 PMCID: PMC8919702 DOI: 10.1002/open.202200017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
An updated review of emerging plant proteases with potential biotechnological application is presented. Plant proteases show comparable or even greater performance than animal or microbial proteases for by-product valorization through hydrolysis for, for example, cheese whey, bird feathers, collagen, keratinous materials, gelatin, fish protein, and soy protein. Active biopeptides can be obtained as high added value products, which have shown numerous beneficial effects on human health. Plant proteases can also be used for wastewater treatment. The production of new plant proteases is encouraged for the following advantages: low cost of isolation using simple procedures, remarkable stability over a wide range of operating conditions (temperature, pH, salinity, and organic solvents), substantial affinity to a broad variety of substrates, and possibility of immobilization. Vegetable proteases have enormous application potential for the valorization of industrial waste and its conversion into products with high added value through low-cost processes.
Collapse
Affiliation(s)
- Franco David Troncoso
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - Daniel Alberto Sánchez
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - María Luján Ferreira
- Departamento de QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| |
Collapse
|
14
|
Jiang G, Sun C, Wang X, Mei J, Li C, Zhan H, Liao Y, Zhu Y, Mao J. Hepatoprotective mechanism of Silybum marianum on nonalcoholic fatty liver disease based on network pharmacology and experimental verification. Bioengineered 2022; 13:5216-5235. [PMID: 35170400 PMCID: PMC8974060 DOI: 10.1080/21655979.2022.2037374] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022] Open
Abstract
The study aimed to identify the key active components in Silybum marianum (S. marianum) and determine how they protect against nonalcoholic fatty liver disease (NAFLD). TCMSP, DisGeNET, UniProt databases, and Venny 2.1 software were used to identify 11 primary active components, 92 candidate gene targets, and 30 core hepatoprotective gene targets in this investigation, respectively. The PPI network was built using a string database and Cytoscape 3.7.2. The KEGG pathway and GO biological process enrichment, biological annotation, as well as the identified hepatoprotective core gene targets were analyzed using the Metascape database. The effect of silymarin on NAFLD was determined using H&E on pathological alterations in liver tissues. The levels of liver function were assessed using biochemical tests. Western blot experiments were used to observe the proteins that were expressed in the associated signaling pathways on the hepatoprotective effect, which the previous network pharmacology predicted. According to the KEGG enrichment study, there are 35 hepatoprotective signaling pathways. GO enrichment analysis revealed that 61 biological processes related to the hepatoprotective effect of S. marianum were identified, which mainly involved in response to regulation of biological process and immune system process. Silymarin was the major ingredient derived from S. marianum, which exhibited the hepatoprotective effect by reducing the levels of ALT, AST, TC, TG, HDL-C, LDL-C, decreasing protein expressions of IL-6, MAPK1, Caspase 3, p53, VEGFA, increasing protein expression of AKT1. The present study provided new sights and a possible explanation for the molecular mechanisms of S. marianum against NAFLD.
Collapse
Affiliation(s)
- Guoyan Jiang
- Department of Emergency, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunhong Sun
- Department of Emergency, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Wang
- Chongqing Medical and Pharmaceutical College, School of Clinical medicine, Chongqing, China
| | - Jie Mei
- Department of periodontal, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Honghong Zhan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yixuan Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yongjun Zhu
- Department of Orthopedics, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Jingxin Mao
- Chongqing Medical and Pharmaceutical College, School of Clinical medicine, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
- College of Basic Medical Science, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Dyshlyuk LS, Dmitrieva AI, Drozdova MY, Milentyeva IS, Prosekov AY. Relevance of bioassay of biologically active substances (BAS) with geroprotective properties in the model of the nematode Caenorhabditis elegans in experiments in vivo. Curr Aging Sci 2021; 15:121-134. [PMID: 34856917 DOI: 10.2174/1874609814666211202144911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/25/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022]
Abstract
Aging is a process global in nature. The age of living organisms contributes to the appearance of chronic diseases, which not only reduce the quality of life, but also significantly damage it. Modern medicines can successfully fight multiple diseases and prolong life. At the same time, medications have a large number of side effects. New research indicates that bioactive phytochemicals have great potential for treating even the most severe diseases and can become an alternative to medicines. Despite many studies in this area, the effects of many plant ingredients on living organisms are poorly understood. Analysis of the mechanisms through which herbal preparations influence the aging process helps to select the right active substances, determine the optimal doses to obtain the maximum positive effect. It is preferable to check the effectiveness of plant extracts and biologically active components with geroprotective properties in vivo. For these purposes, live model systems such as Rattus rattus, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans are used. These models help to comprehensively study the impact of the developed new drugs on the aging process. The model organism C. elegans is gaining increasing popularity in these studies because of its many advantages. This review article discusses the advantages of the nematode C. elegans as a model organism for studying the processes associated with aging. The influence of various BAS and plant extracts on the increase in the life span of the nematode, on the increase in its stress resistance and on other markers of aging is also considered. The review showed that the nematode C. elegans has a number of advantages over other organisms and is a promising model system for studying the geroprotective properties of BAS.
Collapse
Affiliation(s)
- Lyubov S Dyshlyuk
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Anastasiya I Dmitrieva
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Margarita Yu Drozdova
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Irina S Milentyeva
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Alexander Yu Prosekov
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| |
Collapse
|
16
|
Evaluation of variability of silymarin complex in Silybi mariani fructus harvested during two production years. EUROPEAN PHARMACEUTICAL JOURNAL 2021. [DOI: 10.2478/afpuc-2020-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Milk thistle [Silybum marianum (L.) Gaertn.], a member of Asteraceae family, is one of the most cultivated medicinal plants widespread throughout the world. The pharmacological drug is a ripe fruit without pappus – Silybi mariani fructus – containing flavonolignans and generating silymarin complex. In folk medicine, it is used for the treatment of liver disorders, kidney problems, rheumatism as well as gastronomic disturbances, cardiac and neurotic disorders, and fever. The components of silymarin complex are useful in cancer prevention and treatment. The aim of the study was to determine the amount of silymarin complex contained in the fruit of the harvest of two consecutive years and how much they differ from one another. Representative samples of fruit were collected in 2015 and 2016 and distributed by a company Agrofos (Slovakia). Regarding the analytical method, we used a high-performance liquid chromatography (HPLC); the method was approved by the European Pharmacopoeia 10. The statistical significance was on the level P < 0.05. The total content of silymarin complex was 15.28 ± 0.06 g.kg−1 (in 2015) and 16.65 ± 0.09 g.kg−1 (in 2016). In both studied years, the highest representation of silybin B was observed (7.04 ± 0.07 g.kg−1 versus 5.92 ± 0.08 g.kg−1). The differences between the individual fractions of the silymarin complex were statistically significant. There was also a significant difference of 9% in the total silymarin content between 2015 and 2016. In conclusion, we can state that both samples of Silybi mariani fructus meet the requirements of the European Pharmacopoeia.
Collapse
|