1
|
Bayomy HM, Blackmore DPT, Alamri ES, Ozaybi NA, Almasoudi SE, Pearson S, Eyouni L, AlFaris NA, Alshammari GM, Muhammed M, Mohamady Hussein MA. Developing sustainable approach for controlling foodborne pathogens, based on chlorella vulgaris extract/alginate nanoemulsion, and enhanced via the dispersed zinc oxide nanoparticles. Int J Biol Macromol 2025; 305:141241. [PMID: 39986508 DOI: 10.1016/j.ijbiomac.2025.141241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/27/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
A promising antibacterial strategy was developed in this study to effectively eradicate foodborne pathogens via the synergism of Chlorella vulgaris extract (CVE) with zinc oxide nanoparticles (ZNPs) combined into a single nanoform. CVE-alginate nanoemulsion with enhanced antimicrobial and antioxidant properties via the dispersed ZNPs, were prepared and characterized using UV-Vis spectra, FE-SEM-EDX, TEM, DLS, FTIR. The CVE methanol extract was analyzed to record total phenolic and total flavonoid contents. Drug release pattern, encapsulation efficiency, antioxidant, antimicrobial, hemolysis and cytotoxicity were demonstrated. According to TEM and SEM imaging, produced NEs appeared spherical in nanoscale with the range of 17-23.6 nm. The results showed that when the active CVE-NE I dispersed with 1 % or 2 % ZNPs, was applied, exhibited more potent antibacterial properties against the tested foodborne pathogens, including S. aureus, E. coli, S. typhimurium, and B. subtilis, compared to CVE-NE I. CVE was released in slow and sustained manner by addition of ZNPs. All NE samples showed no obvious hemolysis or cytotoxicity when applied on fibroblast cells. These encouraging results offer a fresh approach to the efficient removal of foodborne pathogens, which may be used in food industry.
Collapse
Affiliation(s)
- Hala M Bayomy
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia.
| | | | - Eman S Alamri
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | - Nawal A Ozaybi
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | - Seham E Almasoudi
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | | | | | - Nora A AlFaris
- Department of Sport Health, College of Sports Sciences & Physical Activity, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Mamoun Muhammed
- KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mohamed A Mohamady Hussein
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
2
|
Vishwakarma S, Chaudhry V, Chand S, Sagar K, Gupta KK, Bhardwaj N, Prasad R, Kumar P, Chandra H. The Potential of Fungal Endophytes in Plants: Sources of Bioactive Compounds. Indian J Microbiol 2024. [DOI: 10.1007/s12088-024-01406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/28/2024] [Indexed: 11/20/2024] Open
|
3
|
Chandra H, Yadav A, Prasad R, Kalra SJS, Singh A, Bhardwaj N, Gupta KK. Fungal endophytes from medicinal plants acting as natural therapeutic reservoir. THE MICROBE 2024; 3:100073. [DOI: 10.1016/j.microb.2024.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
|
4
|
Jiang T, Chen J, Huang Y, Chang X, Wu Y, Liu G, Wang R, Xu K, Lu L, Lin H, Tian S. Characteristics of bacterial communities in rhizosphere and bulk soil in Fe-deficient citrus growing in coastal saline-alkali land. FRONTIERS IN PLANT SCIENCE 2024; 14:1335843. [PMID: 38445102 PMCID: PMC10914252 DOI: 10.3389/fpls.2023.1335843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/27/2023] [Indexed: 03/07/2024]
Abstract
Aims Citruses often occur with imbalance in iron nutrition in coastal saline-alkali lands, which severely limits the yield and quality of the fruit. In the rhizosphere, the salt content plays a crucial role in reducing uptake of iron, as well as the activity and abundance of bacteria. However, few studies have explored how salt content affects the effectiveness of iron and the community structure of bacteria across different vertical spatial scales. Methods We investigated the citrus rhizosphere (0-30 cm) and bulk (0-60 cm) soil microenvironments of the coastal saline soil were analyzed using the 16S rRNA amplicon and inductively coupled plasma-optical emission spectroscopy. Results We found that the nutrient-related elements in the rhizosphere and bulk soil decreased with increasing soil depth, while the salinity-related elements showed the opposite trend. The nutrient-related element content in the rhizosphere was higher than that in the bulk, whereas the salinity-alkaline-related element content was lower than that in the bulk. The structure and diversity of bacterial communities are affected by the rhizosphere and soil depth. In the bulk, there are enriched bacteria such as WB1-A12, Nitrospiraceae and Anaerolineae that are tolerant to salt-alkali stress. In the rhizosphere, bacteria that promote plant nutrient absorption and secretion of iron carriers, such as Pseudomonas, Streptomyces, and Duganella, are prominent. Conclusions The soil depth and rhizosphere affect soil nutrients and saline alkali-related factors. Changes in soil depth and rhizosphere determine the structure and diversity of bacterial communities. Rhizosphere enhances iron absorption promoting bacteria to alleviate iron deficiency stress in saline-alkali soils. Our results indicate that citrus roots maybe can resist the stress of iron deficiency in saline-alkali soils by enhancing iron absorption promoting bacteria.
Collapse
Affiliation(s)
- Tianchi Jiang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiuzhou Chen
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yu Huang
- Xiangshan Agricultural and Rural Bureau, Ningbo, China
| | - Xiaoyan Chang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yuping Wu
- Ningbo Agricultural and Rural Bureau, Ningbo, China
| | - Gaoping Liu
- Huangyan Agricultural and Rural Bureau, Taizhou, China
| | - Runze Wang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Kuan Xu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Lingli Lu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Haizhong Lin
- Agricultural Technology Extension Center of Huangyan District, Taizhou, China
| | - Shengke Tian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Anmol, Aggarwal G, Sharma M, Singh R, Shivani, Sharma U. Ethnopharmacologically important highly subsidized Indian medicinal plants: Systematic review on their traditional uses, phytochemistry, pharmacology, quality control, conservation status and future prospective. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117385. [PMID: 37951375 DOI: 10.1016/j.jep.2023.117385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/14/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE India has an extensive reservoir of traditional wisdom and a diverse range of medicinal plants that enrich its heritage. Plants have actively been used for healthcare practices globally since the time immemorial. Medicinal uses of plants have been well recognized in India, evident from plant species documented in different traditional medicinal systems such as Ayurveda (1400-1800 species), Siddha (500-900 species), Unani (400-700 species), Homeopathy (about 372 species), and Sowa-Rigpa (about 250 species), etc. AIM OF THE STUDY: The primary purpose of this review is to provide systematic updated information on thirteen medicinal plants prioritized by the Indian government (providing75 % subsidy on cultivation cost) based on the availability and market demand of these plants. Updated information regarding the traditional uses, phytochemistry, pharmacology, quality control, and conservation status of these plants will help in understanding their pharmacological and commercial importance. This will also help in developing new strategies for their conservation. MATERIAL AND METHODS Online databases such as SciFinder, Web of Science, Pubmed, and Google Scholar were used to collect the electronically available literature on targeted thirteen plants. Also, different Indian government official websites such as AYUSH (https://www.ayush.gov.in); NMPB (National Medicinal Plants Board) (https://nmpb.nic.in); e.charak (https://echarak.in) were used for collecting information related to the amount of subsidy, trade and price related information of these plants. RESULTS To promote medicinal plant cultivation, the Indian government provides subsidies for cultivating some traditionally important medicinal plants. These plants are divided into three categories according to the subsidy provided to farmers, i.e., 30%, 50%, and 75% of the cost of cultivation. Thirteen medicinal plants which are provided 75% subsidy are Aconitum ferox Wall., Aconitum heterophyllum Wall., Aquilaria agallocha Roxb., Berberis aristata DC., Commiphora wightii (Arn.) Bhandari, Nardostachys jatamansi (D.Don) DC., Oroxylum indicum (L.) Benth. ex Kurz, Picrorhiza kurroa Royle ex Benth., Podophyllum hexandrum Royle, Pterocarpus santalinus L.f., Santalum Album L., Saussurea costus (Falc.) Lipsch., and Swertia chirayita (Roxb.) H.Karst. The literature survey reveals the enormous traditional medicinal importance, wide geographical distribution, diverse range of natural products, and broad spectrum of pharmacological activities of these plants. CONCLUSION A comprehensive literature survey revealed that although remarkable progress has been made in isolation, bioactivity evaluation, quality assessment, and conservation, there is still a lot of scope for further scientific interventions. Scientific validation of traditionally claimed medicinal potential is lacking for various bioactivities. Some of the bioactivities are performed just on extracts/fractions, so there is a need for proper phytochemical studies to identify active constituents responsible for the specific bioactivity. Further, quality assessment methods using both targeted and non-targeted tools are required to evaluate the quality of these highly-priced medicinal plants and their adulterants. Ultimately, to encourage the cultivation of these endangered medicinal plant species, it is imperative to implement proper legislation and employ in-situ and ex-situ conservation tools.
Collapse
Affiliation(s)
- Anmol
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gaurav Aggarwal
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mehak Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Raman Singh
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivani
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Kaur R, Saxena S. Evaluation of drought-tolerant endophytic fungus Talaromyces purpureogenus as a bioinoculant for wheat seedlings under normal and drought-stressed circumstances. Folia Microbiol (Praha) 2023; 68:781-799. [PMID: 37076748 DOI: 10.1007/s12223-023-01051-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/30/2023] [Indexed: 04/21/2023]
Abstract
The present work is aimed to hypothesize that fungal endophytes associated with wheat (Triticum aestivum L.) plants can play a variety of roles in biotechnology including plant growth. Out of 67 fungal isolates, five maximum drought-tolerant isolates were used to check their various plant growth-promoting traits, antioxidants, and antifungal activities under secondary screening. Fungal isolate #8TAKS-3a exhibited the maximum drought tolerance capacity and potential to produce auxin, gibberellic acid, ACC deaminase, phosphate, zinc solubilization, ammonia, siderophore, and extracellular enzyme activities followed by #6TAKR-1a isolate. In terms of antioxidant activities, #8TAKS-3a culture also showed maximum DPPH scavenging, total antioxidant, and NO-scavenging activities. However, #6TAKR-1a exhibited maximum total flavonoid content, total phenolic content, and Fe-reducing power and also the highest growth inhibition of Aspergillus niger (ITCC 6152) and Colletotrichum sp. (ITCC 6152). Based on morphological characters and multi-locus phylogenetic analysis of the nuc rDNA internal transcribed spacer region (ITS1-5.8S-ITS2 = ITS), β-tubulin (TUB 2), and RNA polymerase II second largest subunit (RPB2) genes, potent fungal isolate #8TAKS-3a was identified as Talaromyces purpureogenus. Under the in vitro conditions, T. purpureogenus (#8TAKS-3a) was used as a bioinoculant that displayed a significant increase in various physio-biochemical growth parameters under normal and stressed conditions (p < 0.05). Our results indicate that drought stress-tolerant T. purpureogenus can be further used for field testing as a growth promoter.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
7
|
Hashem AH, Attia MS, Kandil EK, Fawzi MM, Abdelrahman AS, Khader MS, Khodaira MA, Emam AE, Goma MA, Abdelaziz AM. Bioactive compounds and biomedical applications of endophytic fungi: a recent review. Microb Cell Fact 2023; 22:107. [PMID: 37280587 DOI: 10.1186/s12934-023-02118-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Human life has been significantly impacted by the creation and spread of novel species of antibiotic-resistant bacteria and virus strains that are difficult to manage. Scientists and researchers have recently been motivated to seek out alternatives and other sources of safe and ecologically friendly active chemicals that have a powerful and effective effect against a wide variety of pathogenic bacteria as a result of all these hazards and problems. In this review, endophytic fungi and their bioactive compounds and biomedical applications were discussed. Endophytes, a new category of microbial source that can produce a variety of biological components, have major values for study and broad prospects for development. Recently, endophytic fungi have received much attention as a source for new bioactive compounds. In addition, the variety of natural active compounds generated by endophytes is due to the close biological relationship between endophytes and their host plants. The bioactive compounds separated from endophytes are usually classified as steroids, xanthones, terpenoids, isocoumarins, phenols, tetralones, benzopyranones and enniatines. Moreover, this review discusses enhancement methods of secondary metabolites production by fungal endophytes which include optimization methods, co-culture method, chemical epigenetic modification and molecular-based approaches. Furthermore, this review deals with different medical applications of bioactive compounds such as antimicrobial, antiviral, antioxidant and anticancer activities in the last 3 years.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Esalm K Kandil
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mahmoud M Fawzi
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed S Abdelrahman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohamed S Khader
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohamed A Khodaira
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Abdallah E Emam
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohamed A Goma
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
8
|
Taibi M, Elbouzidi A, Ou-Yahia D, Dalli M, Bellaouchi R, Tikent A, Roubi M, Gseyra N, Asehraou A, Hano C, Addi M, El Guerrouj B, Chaabane K. Assessment of the Antioxidant and Antimicrobial Potential of Ptychotis verticillata Duby Essential Oil from Eastern Morocco: An In Vitro and In Silico Analysis. Antibiotics (Basel) 2023; 12:antibiotics12040655. [PMID: 37107017 PMCID: PMC10135233 DOI: 10.3390/antibiotics12040655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Ptychotis verticillata Duby, referred to as Nûnkha in the local language, is a medicinal plant that is native to Morocco. This particular plant is a member of the Apiaceae family and has a longstanding history in traditional medicine and has been utilized for therapeutic purposes by practitioners for generations. The goal of this research is to uncover the phytochemical makeup of the essential oil extracted from P. verticillata, which is indigenous to the Touissite region in Eastern Morocco. The extraction of the essential oil of P. verticillata (PVEO) was accomplished through the use of hydro-distillation via a Clevenger apparatus. The chemical profile of the essential oil was then determined through analysis utilizing gas chromatography–mass spectrometry (GC/MS). The study findings indicated that the essential oil of P. verticillata is composed primarily of Carvacrol (37.05%), D-Limonene (22.97%), γ-Terpinene (15.97%), m-Cymene (12.14%) and Thymol (8.49%). The in vitro antioxidant potential of PVEO was evaluated using two methods: the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical trapping assay and the ferric reducing antioxidant power (FRAP) method. The data demonstrated considerable radical scavenging and relative antioxidative power. Escherichia coli, Staphylococcus aureus, Listeria innocua, and Pseudomonas aeruginosa were the most susceptible bacterial strains tested, while Geotrichum candidum, Candida albicans, and Rhodotorula glutinis were the most resilient fungi strains. PVEO had broad-spectrum antifungal and antibacterial properties. To elucidate the antioxidative and antibacterial characteristics of the identified molecules, we applied the methodology of molecular docking, a computational approach that forecasts the binding of a small molecule to a protein. Additionally, we utilized the Prediction of Activity Spectra for Substances (PASS) algorithm; Absorption, Distribution, Metabolism, and Excretion (ADME); and Pro-Tox II (to predict the toxicity in silico) tests to demonstrate PVEO’s identified compounds’ drug-likeness, pharmacokinetic properties, the anticipated safety features after ingestion, and the potential pharmacological activity. Finally, our findings scientifically confirm the ethnomedicinal usage and usefulness of this plant, which may be a promising source for future pharmaceutical development.
Collapse
Affiliation(s)
- Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Douaae Ou-Yahia
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohammed Dalli
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
- Laboratory of Microbiology, Faculty of Medicine and Pharmacy, University Mohammed The First, Oujda 60000, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Aziz Tikent
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohammed Roubi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Nadia Gseyra
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France
- Correspondence: (C.H.); (M.A.)
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
- Correspondence: (C.H.); (M.A.)
| | - Bouchra El Guerrouj
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Khalid Chaabane
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
9
|
The Potential of Bacilli-Derived Biosurfactants as an Additive for Biocontrol against Alternaria alternata Plant Pathogenic Fungi. Microorganisms 2023; 11:microorganisms11030707. [PMID: 36985279 PMCID: PMC10056989 DOI: 10.3390/microorganisms11030707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Fungal diseases caused by Alternaria alternata constitute a significant threat to the production and quality of a wide range of crops, including beans, fruits, vegetables, and grains. Traditional methods for controlling these diseases involve synthetic chemical pesticides, which can negatively impact the environment and human health. Biosurfactants are natural, biodegradable secondary metabolites of microorganisms that have also been shown to possibly have antifungal activity against plant pathogenic fungi, including A. alternata being sustainable alternatives to synthetic pesticides. In this study, we investigated the potential of biosurfactants of three bacilli (Bacillus licheniformis DSM13, Bacillus subtilis DSM10, and Geobacillus stearothermophilus DSM2313) as a biocontrol agent against A. alternata on beans as a model organism. For this fermentation, we describe using an in-line biomass sensor monitoring both permittivity and conductivity, which are expected to correlate with cell concentration and products, respectively. After the fermentation of biosurfactants, we first characterised the properties of the biosurfactant, including their product yield, surface tension decrement capability, and emulsification index. Then, we evaluated the antifungal properties of the crude biosurfactant extracts against A. alternata, both in vitro and in vivo, by analysing various plant growth and health parameters. Our results showed that bacterial biosurfactants effectively inhibited the growth and reproduction of A. alternata in vitro and in vivo. B. licheniformis manufactured the highest amount of biosurfactant (1.37 g/L) and demonstrated the fastest growth rate, while G. stearothermophilus produced the least amount (1.28 g/L). The correlation study showed a strong positive relationship between viable cell density VCD and OD600, as well as a similarly good positive relationship between conductivity and pH. The poisoned food approach in vitro demonstrated that all three strains suppressed mycelial development by 70–80% when applied with the highest tested dosage of 30%. Regarding in vivo investigations, B. subtilis post-infection treatment decreased the disease severity to 30%, whereas B. licheniformis and G. stearothermophilus post-infection treatment reduced disease severity by 25% and 5%, respectively. The study also revealed that the plant’s total height, root length, and stem length were unaffected by the treatment or the infection.
Collapse
|
10
|
Zheng Z, Chai S, Chen J, Yang H, Chang J, Yang G. Isolation and identification of flavonoid-producing endophytic fungi from Loranthus tanakae Franch. & Sav that exhibit antioxidant and antibacterial activities. J Appl Microbiol 2022; 133:1892-1904. [PMID: 35771150 DOI: 10.1111/jam.15696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
AIMS Loranthus tanakae Franch. & Sav is a medicinal plant that has a variety of pharmacological properties. However, its study is currently limited because of its relative shortage of natural abundance. The objective of this work was to find an alternative resource from this plant that could produce its bioactive ingredients. METHODS AND RESULTS We isolated endophytic fungi from the twigs of Loranthus tanakae Franch. & Sav, and eight flavonoid-producing endophytic fungi were selected. The eight endophytic fungi meeting the criteria were identified as Alternaria tenuissima, Dothiorella gregaria, Penicillium aethiopicum, Nothophoma quercina, and Hypoxylon perforatum by morphological and molecular methods. The antioxidant and antibacterial activities of the flavonoid-producing endophytic fungi were investigated in vitro, where Alternaria tenuissima ZP28 and ZM148 demonstrated greater activities than the other six strains. Flavonoids of ZP28 and ZM148 were preliminarily identified by liquid chromatography-mass spectrometry (LC-MS). CONCLUSION After screening the flavonoid-producing endophytic fungi, Alternaria tenuissima ZP28 and ZM148 were found to have good antioxidant and antibacterial activities. Overall, this study provided new direction and resources for the acquisition of flavonoids. SIGNIFICANCE AND IMPACT OF THE STUDY Endophytic fungi are a promising alternative approach for the large-scale production of flavonoids from Loranthus tanakae Franch. & Sav.
Collapse
Affiliation(s)
- Ziyun Zheng
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi, P.R. China
| | - Shutong Chai
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi, P.R. China
| | - Jie Chen
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi, P.R. China
| | - Hong Yang
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi, P.R. China
| | - Jiayu Chang
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi, P.R. China
| | - Guan'e Yang
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi, P.R. China
| |
Collapse
|
11
|
Elghaffar RYA, Amin BH, Hashem AH, Sehim AE. Promising Endophytic Alternaria alternata from Leaves of Ziziphus spina-christi: Phytochemical Analyses, Antimicrobial and Antioxidant Activities. Appl Biochem Biotechnol 2022; 194:3984-4001. [PMID: 35579741 PMCID: PMC9424163 DOI: 10.1007/s12010-022-03959-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
Fungal endophytes are considered one of the most important reservoirs of bioactive compounds which defeat resistant microbes. In our study, endophytic Alternaria alternata was isolated from Ziziphus spina-christi and identified morphologically and genetically with accession number OM 331,682. Preliminary phytochemical screening of ethyl acetate (EA) crude extract of A. alternata revealed that this extract contains alkaloids, tannins, flavonoids, glycosides, phenols, and terpenoids. Moreover, the extract was analyzed using gas chromatography-mass spectrometry (GC–MS) which verified the presence of numerous bioactive compounds. Antimicrobial results illustrated that EA crude extract exhibited promising antimicrobial activity against Gram-negative bacteria (Escherichia coli ATCC 11229, Proteus vulgaris RCMB 004, Pseudomonas aeruginosa ATCC 27853, and Klebsiella pneumonia RCMB 003), Gram-positive bacteria (Bacillus subtilis RCMB 015, Staphylococcus aureus ATCC 25923, and Staphylococcus epidermidis ATCC 14990), and unicellular fungi (Candida albicans ATCC 90028). Ultrastructure study of treated K. pneumonia showed remarkably elucidated destruction of the cell wall and cell membrane and leakage of cytoplasmic materials. Furthermore, the extract has potential antioxidant activity where IC50 was 409 µg/mL. Moreover, this extract did not show any toxicity on Vero normal cell line. These findings confirmed that the endophytic A. alternata from Z. spina-christi is a promising source of bioactive compounds which can be used in different biological applications.
Collapse
Affiliation(s)
- Rasha Y Abd Elghaffar
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Basma H Amin
- The regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, 11787, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Amira E Sehim
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
12
|
Flowering, Nutritional Status, and Content of Chloroplast Pigments in Leaves of Gladiolus hybridus L. ‘Advances Red’ after Application of Trichoderma spp. SUSTAINABILITY 2022. [DOI: 10.3390/su14084576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, we attempt to assess the influence of Trichoderma spp. on the flowering and nutritional status of Gladiolus hybridus L. ‘Advances Red’, as well as on the content of chlorophyll a + b and carotenoids in the leaves. During both years of the experiment, there was a treatment in which Trichoderma fungi were not used (control), and in another treatment, plants were treated with these fungi. After five weeks of cultivation, when leaf apexes were visible above the surface of the substrate, each plant was irrigated with a suspension (20 mL) of mix of Trichoderma spp. (T. viride Schumach-Tv14, T. harzianum Rifai-Thr2, T. hamatum/Bonord/Bainier-Th15). The treatment of the plants Trichoderma-spp. improved their uptake of macro- (P, K and Ca) and micronutrients (Zn, Fe and B), and increased the chlorophyll a + b and carotenoids in their leaves. Trichoderma spp. accelerated the flowering of Gladiolus hybridus L. ‘Advances Red’ by 10–14 days. The fungi stimulated the elongation of inflorescence shoots and inflorescences, in which the number of flowers increased, but flower diameter did not change. Trichoderma spp. improved the nutrients uptake, chlorophyll a + b and carotenoids, and flowering; hence, Trichoderma spp. treatment is suggested for enhancing inflorescence and inflorescence shoots in Gladiolus hybridus.
Collapse
|
13
|
Kumar V, Prasher IB. Antimicrobial potential of endophytic fungi isolated from Dillenia indica L. and identification of bioactive molecules produced by Fomitopsis meliae (Undrew.) Murril. Nat Prod Res 2022; 36:6064-6068. [DOI: 10.1080/14786419.2022.2043855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Vijay Kumar
- Mycology and Plant Pathology Laboratory, Department of Botany, Panjab University, Chandigarh, India
| | - Indu Bhushan Prasher
- Mycology and Plant Pathology Laboratory, Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
14
|
N-Acetylglucosamine Sensing and Metabolic Engineering for Attenuating Human and Plant Pathogens. Bioengineering (Basel) 2022; 9:bioengineering9020064. [PMID: 35200417 PMCID: PMC8869657 DOI: 10.3390/bioengineering9020064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
During evolution, both human and plant pathogens have evolved to utilize a diverse range of carbon sources. N-acetylglucosamine (GlcNAc), an amino sugar, is one of the major carbon sources utilized by several human and phytopathogens. GlcNAc regulates the expression of many virulence genes of pathogens. In fact, GlcNAc catabolism is also involved in the regulation of virulence and pathogenesis of various human pathogens, including Candida albicans, Vibrio cholerae, Leishmania donovani, Mycobacterium, and phytopathogens such as Magnaporthe oryzae. Moreover, GlcNAc is also a well-known structural component of many bacterial and fungal pathogen cell walls, suggesting its possible role in cell signaling. Over the last few decades, many studies have been performed to study GlcNAc sensing, signaling, and metabolism to better understand the GlcNAc roles in pathogenesis in order to identify new drug targets. In this review, we provide recent insights into GlcNAc-mediated cell signaling and pathogenesis. Further, we describe how the GlcNAc metabolic pathway can be targeted to reduce the pathogens’ virulence in order to control the disease prevalence and crop productivity.
Collapse
|
15
|
Xiao Y, Liu H, Chen R, Liu S, Hao X, Fang J. Heteroauxin-producing bacteria enhance the plant growth and lead uptake of Miscanthus floridulus (Lab.). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1205-1212. [PMID: 34995152 DOI: 10.1080/15226514.2021.2024134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soil lead (Pb) contamination has caused severe environmental threats and is in urgent need of remediation. This study was aimed to explore the feasibility of using the Miscanthus-microbe combination to reduce Pb pollution in the farmland surrounding a lead-zinc mining area. We have screened three heteroauxin (IAA)-producing microbes (Lelliottia jeotgali MR2, Klebsiella michiganensis TS8, and Klebsiella michiganensis ZR1) with high Pb tolerance. The IAA-producing ability of the mixed-species was stronger than that of the single bacterium. In pot experiments, the mixed-species of MR2-ZR1 and MR2-TS8 had better performance in enhancing the weight of Miscanthus grass (increased by 22.2-53.6% compared to the control group without inoculating microbes). The remediation efficiency of Pb was significantly higher in the MR2 (30.79%), MR2-TS8 (24.96%), and TS8-ZR1 (21.10%) groups than that in the control group (6.75%). We speculated that MR2 and mixed species of MR2-TS8 and TS8-ZR1 could promote the percentages of activated Pb fractions in soils and increase the Pb uptake of M. floridulus (Lab.). These results implied that the MR2-TS8 mixed-species might be selected as the effective microbial agent to simultaneously enhance the remediation efficiency of Pb-contaminated soils and the biomass of M. floridulus (Lab.).
Collapse
Affiliation(s)
- Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, China
| | - Hongmei Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Rui Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shuming Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiaodong Hao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, China
| |
Collapse
|
16
|
Diversity and biological activity of fungal endophytes of Zingiber officinale Rosc. with emphasis on Aspergillus terreus as a biocontrol agent of its leaf spot. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Phytochemical analysis and antimicrobial potential of Nigrospora sphaerica (Berk. & Broome) Petch, a fungal endophyte isolated from Dillenia indica L. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00619-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|