1
|
Saliba ASMC, Rosalen PL, Franchin M, Cunha GAD, Sartori AGDO, Matias de Alencar S. Fruits native to South America: a narrative review of their biological properties and chemical profiles. Food Funct 2025; 16:3774-3799. [PMID: 40326926 DOI: 10.1039/d5fo00549c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Fruits native to South America have been recognized for their relevant levels of phytochemicals with bioactivities that offer human health benefits beyond nutrition; however, many of them remain unexplored. The objective of this study was to compile the recent literature regarding the phytochemical profiles and biological properties of fruits native to South America. Over 600 fruits were analyzed, and those with the most substantial scientific literature regarding their phytochemical profiles and antioxidant, anti-inflammatory, and antimicrobial activities were selected. Based on the reviewed literature, 40 selected fruits were analyzed, and antioxidant activity was reported for 38 fruits, antimicrobial activity for 31, and anti-inflammatory activity for 30. This data allowed for a comparative analysis of the bioactive potential of these fruits. However, factors like extraction methods, harvest time and location, and cultivar variations were found to have significant impacts on fruit bioactivity. Common limitations in properly investigating the phytochemical composition of fruits grown in the wild include lack of access to sufficient materials, lack of reproducibility of results owing to variations in chemical composition, and inability to use accurate techniques, such as mass spectrometry and nuclear magnetic resonance. Clinical trials should be encouraged to confirm the antioxidant and anti-inflammatory activities of fruits observed in vitro. Furthermore, extract refinement prior to antimicrobial analysis remains challenging to obtain reliable results. This review provides helpful information to guide further studies on these fruits and strategic public policies concerning the development of sustainable supply chains to preserve the biodiversity of South America.
Collapse
Affiliation(s)
| | - Pedro Luiz Rosalen
- Graduate Program in Biological Sciences, Federal University of Alfenas, CEP: 37130-001, Alfenas, MG, Brazil
| | - Marcelo Franchin
- Graduate Program in Biological Sciences, Federal University of Alfenas, CEP: 37130-001, Alfenas, MG, Brazil
| | - Gustavo Aparecido da Cunha
- Graduate Program in Biological Sciences, Federal University of Alfenas, CEP: 37130-001, Alfenas, MG, Brazil
| | | | - Severino Matias de Alencar
- Center of Nuclear Energy in Agriculture, University of São Paulo, CEP: 13416-000, Piracicaba, SP, Brazil.
- Luiz de Queiroz College of Agriculture, University of São Paulo, CEP: 13418-900, Piracicaba, SP, Brazil
| |
Collapse
|
2
|
García-Gurrola A, Martínez AL, Wall-Medrano A, Olivas-Aguirre FJ, Ochoa-Ruiz E, Escobar-Puentes AA. Phytochemistry, Anti-cancer, and Anti-diabetic Properties of Plant-Based Foods from Mexican Agrobiodiversity: A Review. Foods 2024; 13:4176. [PMID: 39767118 PMCID: PMC11675762 DOI: 10.3390/foods13244176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) and cancer are significant contributors to morbidity and mortality worldwide. Recent studies have increasingly highlighted the potential of phytochemicals found in plants and plant-based foods for preventing and treating these chronic diseases. Mexico's agrobiodiversity provides a valuable resource for phytochemistry. This review presents an examination of essential phytochemicals found in plants and foods within Mexican agrobiodiversity that have shown promising anti-cancer and anti-diabetic properties, including their roles as antioxidants, insulin sensitizers, and enzyme inhibitors. Notable compounds identified include flavonoids (such as quercetin and catechins), phenolic acids (chlorogenic, gallic, and caffeic acids), methylxanthines (like theobromine), xanthones (such as mangiferin), capsaicinoids (capsaicin), organosulfur compounds (like alliin), and various lipids (avocatins). Although these phytochemicals have shown promise in laboratory and animal studies, there is a significant scarcity of clinical trial data involving humans, underscoring an important area for future research.
Collapse
Affiliation(s)
- Adriana García-Gurrola
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| | - Ana Laura Martínez
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| | - Abraham Wall-Medrano
- Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Ciudad Juaez 32300, Chihuahua, Mexico; (A.W.-M.); (F.J.O.-A.)
| | - Francisco J. Olivas-Aguirre
- Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Ciudad Juaez 32300, Chihuahua, Mexico; (A.W.-M.); (F.J.O.-A.)
| | - Estefania Ochoa-Ruiz
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| | - Alberto A. Escobar-Puentes
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| |
Collapse
|
3
|
Widhanti A, Iwansyah AC, Yelliantty, Kurniawan T, Pramareti GMJ, Indriati A, Hamid HA. Effects of foam mat-drying condition on physicochemical and antioxidant properties of instant Physalis angulata L. enriched with Moringa oleifera L. extract. AN ACAD BRAS CIENC 2024; 96:e20240006. [PMID: 39630800 DOI: 10.1590/0001-3765202420240006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/29/2024] [Indexed: 12/07/2024] Open
Abstract
Food drying is still a crucial step in the food manufacturing process for food preservation, and the foam-mat drying method can be utilized to further enhance food preservation. This study aims to develop an instant L. powder enriched with Moringa oleifera L. extract and to evaluate the effect of foam mat drying conditions on physicochemical and antioxidant properties.The experimental design used a factorial completely randomized block design (FCBD), with triplicates. Based on the results showed that the interaction between the different forms of moringa extract, when added, and drying temperature affected color, water activity, bulk density, hygroscopicity, total acid titration, moisture content, ABTS, antioxidant activity and total flavonoid contents (p<0.05) but did not affect solubility, total soluble solids, flow rate, pH, DPPH antioxidant activity and total phenolic contents (p>0.05). Samples dried at a temperature of 70°C (T3), both liquid (F1) and microencapsulated (F2), exhibited the best physicochemical and antioxidant properties. These findings confirmed the suitability of foam mat drying to produce P. angulata instant powder enriched with M. oleifera extract for functional food ingredients.
Collapse
Affiliation(s)
- Ajeng Widhanti
- Pasudan University, Faculty of Engineering, Department of Technology Food, Jl Dr. Setiabudi, No. 193, Bandung, West Java 40153, Indonesia
| | - Ade Chandra Iwansyah
- National Research and Innovation Agency, Research Center for Technology and Food Processing, Jl. Jogja-Wonosari km 31,5 Gunungkidul, Yogyakarta 55861, Indonesia
| | - Yelliantty
- Pasudan University, Faculty of Engineering, Department of Technology Food, Jl Dr. Setiabudi, No. 193, Bandung, West Java 40153, Indonesia
| | - Taufik Kurniawan
- National Research and Innovation Agency, Research Center for Technology and Food Processing, Jl. Jogja-Wonosari km 31,5 Gunungkidul, Yogyakarta 55861, Indonesia
| | - Gradia Martin Jati Pramareti
- National Research and Innovation Agency, Research Center for Technology and Food Processing, Jl. Jogja-Wonosari km 31,5 Gunungkidul, Yogyakarta 55861, Indonesia
| | - Ashri Indriati
- National Research and Innovation Agency, Research Center for Appropriate Technology, Jl. KS Tubun No. 5 Subang, West Java 41213, Indonesia
| | - Hazrulrizawati Abd Hamid
- Universiti Malaysia Pahang Al-Sultan Abdullah, Faculty of Industrial Sciences and Technology, Lebuhraya Tun Khalil Yaakob, 26300, Gambang, Kuantan, Malaysia
| |
Collapse
|
4
|
Wu W, Zheng Z, Wang Z, Gao C, Liang Y, Zeng W, Sun W. Profiling of Potential Anti-Diabetic Active Compounds in White Tea: An Integrated Study of Polyphenol-Targeted Metabolomics, Network Pharmacology, and Computer Simulation. Foods 2024; 13:3354. [PMID: 39517138 PMCID: PMC11545757 DOI: 10.3390/foods13213354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes remains a critical global public health challenge, posing a growing threat to human health and well-being. White tea is a lightly fermented tea and one of the six traditional tea categories in China. Owing to its rich content of bioactive compounds such as catechins and alkaloids, it has demonstrated potential anti-diabetic properties. However, its precise bioactive components, mechanisms of action, and relevant molecular targets require further investigation. In this study, an integrated approach combining polyphenol-targeted metabolomics, in vitro antioxidant assays, α-glucosidase inhibition tests, network pharmacology analysis, GEO database exploration, molecular docking, and molecular dynamics simulations was employed to identify the potential anti-diabetic compounds, targets, and mechanisms of white tea. The findings revealed that white tea is particularly abundant in 10 bioactive compounds, including epigallocatechin gallate, epicatechin gallate, and catechin, all of which exhibit significant anti-diabetic potential. These compounds were found to exert their effects by interacting with core molecular targets, namely cathepsin V (CTSV) and nucleotide-binding oligomerization domain-containing protein 1 (NOD1), and engaging in pathways related to signal transduction, apoptosis, and immune responses. This study establishes a strong theoretical basis for advancing white tea research and underscores new opportunities for applying natural products in diabetes therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (Z.Z.); (Z.W.); (C.G.); (Y.L.); (W.Z.)
| |
Collapse
|
5
|
El-Lateef HMA, Khalaf MM, Taleb MFA, Gouda M. Chromatographic Fingerprinting of Cacao Pod Husk Extracts (Theobroma cacao L.): Exploring Antibacterial, Antioxidant, and Antidiabetic Properties with In Silico Molecular Docking Analysis. Appl Biochem Biotechnol 2024; 196:7375-7403. [PMID: 38526663 DOI: 10.1007/s12010-024-04912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Natural drugs derived from plants are becoming more popular because of their apparent biological efficacy, affordability, and safety. A byproduct of cocoa farms, cocoa pod husk (CPH), is often disregarded yet contains an abundance of phenolic chemicals that have antimicrobial and antioxidant features, which has led to intensive investigation into possible biomedical applications. In order to identify crucial functional groups and phytochemical components, we carefully examined the 80% ethanol and dichloromethane extracts of CPH using gas chromatography-mass spectrometry (GC-MS) and HPLC. The antibacterial and antioxidant properties of such extracts and their impact on cytotoxicity and α-glucosidase were explored. According to our results, the 80% ethanol and dichloromethane extracts contained 19 and 12 phytochemical components, respectively. Interestingly, at 250 µg/mL, all CPH extracts showed strong antibacterial properties that totally prevented the bacterial growth. At 66.6% and 82.7%, respectively, the ethanol and dichloromethane extracts showed impressive antioxidant and DPPH scavenging capabilities where the ethanol extract showed a substantially lower IC50 value of 35.26 µg/mL than the dichloromethane extract, which had an IC50 value of 23.88 µg/mL. Furthermore, the α-glucosidase inhibitory effect of the dichloromethane extract was found to be better, as shown by its IC50 value of 126.5 µg/mL, which was lower than that of the ethanol extract at 151.3 µg/mL. The extracts' compatibility was verified by cytotoxicity tests, which revealed no appreciable alterations in the cell lines. Additionally, novel in silico molecular docking experiments were performed on 25 discovered compounds, providing insight into their possible bioactivity. Broad-spectrum activities of extracts were confirmed by molecular docking investigations aimed at interacting with α-glucosidase proteins. Our thorough analysis makes CPH extracts seem like the excellent candidates for biomedical uses. These results provide new insights into the therapeutic potential of CPH extracts and pave the way for the development of innovative medications and natural remedies.
Collapse
Affiliation(s)
- Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
| |
Collapse
|
6
|
Caroline Paz Gonçalves G, Lizandra Gomes Rosas A, Carneiro de Sousa R, Regina Rodrigues Vieira T, César de Albuquerque Sousa T, Ramires T, Ferreira Ferreira da Silveira T, Barros L, Padilha da Silva W, Renato Guerra Dias Á, da Rosa Zavareze E, Dillenburg Meinhart A. A green method for anthocyanin extraction from Clitoria ternatea flowers cultivated in southern Brazil: Characterization, in vivo toxicity, and biological activity. Food Chem 2024; 435:137575. [PMID: 37776651 DOI: 10.1016/j.foodchem.2023.137575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/28/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
This study aimed to develop a green method to obtain an anthocyanin-rich edible extract of Clitoria ternatea flowers grown in southern Brazil. The extract was characterized by UHPLC-MSn and analyzed for toxicological potential in an in vivo model, total phenolic content, and biological activities. By using a 23 multivariate design to study the effects of temperature, acidified solvent, and time on the total anthocyanin content (487.25 mg/g), total phenolic content (2242.47 mgGAE/g), it was possible to determine the optimal point (45 °C, 16 min, and 22.5 mL extraction solution). Thirteen anthocyanins and nine non-anthocyanins were quantified. In vivo toxicity assay using Galleria mellonella showed a safe concentration when administered up to 2.2 g of extract per body kg. The extract showed antioxidant activity and antibacterial action against food pathogens, the method proved to have a low environmental impact, in addition to producing an extract with potential for application in food.
Collapse
Affiliation(s)
- Glória Caroline Paz Gonçalves
- Federal University of Pelotas (UFPel), R. Gomes Carneiro, no. 1, Balsa, Pelotas, 96010-610, Rio Grande do Sul, Brazil
| | | | - Rafael Carneiro de Sousa
- Federal University of Pelotas (UFPel), R. Gomes Carneiro, no. 1, Balsa, Pelotas, 96010-610, Rio Grande do Sul, Brazil
| | - Thaís Regina Rodrigues Vieira
- Federal University of Pelotas (UFPel), R. Gomes Carneiro, no. 1, Balsa, Pelotas, 96010-610, Rio Grande do Sul, Brazil
| | | | - Tassiana Ramires
- Federal University of Pelotas (UFPel), R. Gomes Carneiro, no. 1, Balsa, Pelotas, 96010-610, Rio Grande do Sul, Brazil
| | - Tayse Ferreira Ferreira da Silveira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Wladimir Padilha da Silva
- Federal University of Pelotas (UFPel), R. Gomes Carneiro, no. 1, Balsa, Pelotas, 96010-610, Rio Grande do Sul, Brazil
| | - Álvaro Renato Guerra Dias
- Federal University of Pelotas (UFPel), R. Gomes Carneiro, no. 1, Balsa, Pelotas, 96010-610, Rio Grande do Sul, Brazil
| | - Elessandra da Rosa Zavareze
- Federal University of Pelotas (UFPel), R. Gomes Carneiro, no. 1, Balsa, Pelotas, 96010-610, Rio Grande do Sul, Brazil
| | - Adriana Dillenburg Meinhart
- Federal University of Pelotas (UFPel), R. Gomes Carneiro, no. 1, Balsa, Pelotas, 96010-610, Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Ramos-Escudero F, Casimiro-Gonzales S, Cádiz-Gurrea MDLL, Cancino Chávez K, Basilio-Atencio J, Ordoñez ES, Muñoz AM, Segura-Carretero A. Optimizing vacuum drying process of polyphenols, flavanols and DPPH radical scavenging assay in pod husk and bean shell cocoa. Sci Rep 2023; 13:13900. [PMID: 37626081 PMCID: PMC10457311 DOI: 10.1038/s41598-023-40815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The objective of this study was to optimize different vacuum drying conditions for cocoa pod husk and cocoa bean shell in order to enhance these by-products for commercial applications. To carry out the optimization, the response surface methodology was applied using a Box-Behnken experimental design with 15 experiments for which different conditions of temperature (X1), drying time (X2) and vacuum pressure (X3) were established. The response variables were the content of total polyphenols, the content of flavanols and the radical scavenging activity evaluated in the extracts of the different experiments. Temperature (50-70 °C), drying time (3-12 h) and vacuum pressure (50-150 mbar) were considered as independent variables. The main factors affecting the response variables were temperature, followed by vacuum pressure. For the content of polyphenols, the optimal response values predicted for the cocoa pod husk was 11.17 mg GAE/g with a confidence limit (95%) of 9.05 to 13.28 mg GAE/g (optimal conditions: 65 °C, 8 h and 75 mbar), while for the cocoa bean shell cocoa was 29.61 mg GAE/g with a confidence limit (95%) of 26.95 to 32.26 mg GAE/g (optimal conditions: 50 °C, 5 h and 100 mbar). Therefore, results of this study suggest a high content of phenolic compounds obtained from these by-products that show relevance as functional ingredients for application in the food, nutraceutical, and cosmeceutical industries.
Collapse
Affiliation(s)
- Fernando Ramos-Escudero
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Calle Toulon 310, 15024, Lima, Peru.
- Carrera de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad San Ignacio de Loyola, Av. La Fontana 550, 15024, Lima, Peru.
| | - Sandra Casimiro-Gonzales
- Instituto de Ciencias de los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Pachacámac, 15823, Lima, Peru
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Fuentenueva s/n, 18071, Granada, Spain
| | - Keidy Cancino Chávez
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Calle Toulon 310, 15024, Lima, Peru
| | - Jaime Basilio-Atencio
- Facultad de Ingeniería en Industrias Alimentarias, Universidad Nacional Agraria de la Selva, Carretera Central km. 1,2, Tingo María, Peru
| | - Elizabeth S Ordoñez
- Facultad de Ingeniería en Industrias Alimentarias, Universidad Nacional Agraria de la Selva, Carretera Central km. 1,2, Tingo María, Peru
| | - Ana María Muñoz
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Calle Toulon 310, 15024, Lima, Peru
- Instituto de Ciencias de los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Pachacámac, 15823, Lima, Peru
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Fuentenueva s/n, 18071, Granada, Spain
| |
Collapse
|
8
|
Nikolaichuk H, Choma IM, Morlock GE. Effect-Directed Profiling of Akebia quinata and Clitoria ternatea via High-Performance Thin-Layer Chromatography, Planar Assays and High-Resolution Mass Spectrometry. Molecules 2023; 28:molecules28072893. [PMID: 37049655 PMCID: PMC10096148 DOI: 10.3390/molecules28072893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Two herbal plants, Akebia quinata D. leaf/fruit and Clitoria ternatea L. flower, well-known in traditional medicine systems, were investigated using a non-target effect-directed profiling. High-performance thin-layer chromatography (HPTLC) was combined with 11 different effect-directed assays, including two multiplex bioassays, for assessing their bioactivity. Individual active zones were heart-cut eluted for separation via an orthogonal high-performance liquid chromatography column to heated electrospray ionization high-resolution mass spectrometry (HPLC-HESI-HRMS) for tentative assignment of molecular formulas according to literature data. The obtained effect-directed profiles provided information on 2,2-diphenyl-1-picrylhydrazyl scavenging, antibacterial (against Bacillus subtilis and Aliivibrio fischeri), enzyme inhibition (tyrosinase, α-amylase, β-glucuronidase, butyrylcholinesterase, and acetylcholinesterase), endocrine (agonists and antagonists), and genotoxic (SOS-Umu-C) activities. The main bioactive compound zones in A. quinata leaf were tentatively assigned to be syringin, vanilloloside, salidroside, α-hederin, cuneataside E, botulin, and oleanolic acid, while salidroside and quinatic acids were tentatively identified in the fruit. Taraxerol, kaempherol-3-rutinoside, kaempferol-3-glucoside, quercetin-3-rutinoside, and octadecenoic acid were tentatively found in the C. ternatea flower. This straightforward hyphenated technique made it possible to correlate the biological properties of the herbs with possible compounds. The meaningful bioactivity profiles contribute to a better understanding of the effects and to more efficient food control and food safety.
Collapse
Affiliation(s)
- Hanna Nikolaichuk
- Chair of Food Science, Institute of Nutritional Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- Department of Chromatography, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20031 Lublin, Poland
- Department of Bioanalytics, Faculty of Biomedicine, Medical University of Lublin, Jaczewskiego St. 8b, 20090 Lublin, Poland
| | - Irena M Choma
- Department of Chromatography, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20031 Lublin, Poland
| | - Gertrud E Morlock
- Chair of Food Science, Institute of Nutritional Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
9
|
Kolonas A, Vareltzis P, Kiroglou S, Goutzourelas N, Stagos D, Trachana V, Tsadila C, Mossialos D, Mourtakos S, Gortzi O. Antioxidant and Antibacterial Properties of a Functional Sports Beverage Formulation. Int J Mol Sci 2023; 24:ijms24043558. [PMID: 36834967 PMCID: PMC9959907 DOI: 10.3390/ijms24043558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Athletes often consume functional beverages in order to improve performance and reduce oxidative stress caused by high-intensity exercise. The present study aimed to evaluate the antioxidant and antibacterial properties of a functional sports beverage formulation. The beverage's antioxidant effects were assessed on human mesenchymal stem cells (MSCs) by determining thiobarbituric acid reactive substances (TBARS; TBARS levels decreased significantly by 52.67% at 2.0 mg/mL), total antioxidant capacity (TAC; TAC levels increased significantly by 80.82% at 2.0 mg/mL) and reduced glutathione (GSH; GSH levels increased significantly by 24.13% at 2.0 mg/mL) levels. Furthermore, the beverage underwent simulated digestion following the INFOGEST protocol to assess its oxidative stability. The analysis of the total phenolic content (TPC) using the Folin-Ciocalteu assay revealed that the beverage contained a TPC of 7.58 ± 0.066 mg GAE/mL, while the phenolics identified by HPLC were catechin (2.149 mg/mL), epicatechin (0.024 mg/mL), protocatechuic acid (0.012 mg/mL), luteolin 7-glucoside (0.001 mg/mL), and kaempferol-3-O-β-rutinoside (0.001 mg/mL). The beverage's TPC was strongly correlated with TAC (R2 = 896). Moreover, the beverage showcased inhibitory and bacteriostatic effects against Staphylococcus aureus and Pseudomonas aeruginosa. Lastly, the sensory acceptance test demonstrated that the functional sports beverage was well accepted by the assessors.
Collapse
Affiliation(s)
- Alexandros Kolonas
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece
| | - Patroklos Vareltzis
- Laboratory of Food and Agricultural Industries Technologies, Chemical Engineering Department, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Smaro Kiroglou
- Laboratory of Food and Agricultural Industries Technologies, Chemical Engineering Department, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 415 00 Larissa, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 415 00 Larissa, Greece
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, University of Thessaly, Biopolis, 415 00 Larissa, Greece
| | - Christina Tsadila
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 415 00 Larissa, Greece
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 415 00 Larissa, Greece
| | - Stamatis Mourtakos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 176 71 Athens, Greece
| | - Olga Gortzi
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece
- Correspondence:
| |
Collapse
|
10
|
Wang Y, Liu T, Xie Y, Li N, Liu Y, Wen J, Zhang M, Feng W, Huang J, Guo Y, Kabbas Junior T, Wang D, Granato D. Clitoria ternatea blue petal extract protects against obesity, oxidative stress, and inflammation induced by a high-fat, high-fructose diet in C57BL/6 mice. Food Res Int 2022; 162:112008. [DOI: 10.1016/j.foodres.2022.112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022]
|
11
|
Meza-Gutiérrez NN, Magallón-Servín P, Balois-Morales R, Pérez-Ramírez IF, López-Guzmán GG, Berumen-Varela G, Bautista-Rosales PU. Growth Promoting Activity of Annona muricata L. Leaf Extracts on Lactobacillus casei. PLANTS (BASEL, SWITZERLAND) 2022; 11:581. [PMID: 35270049 PMCID: PMC8912565 DOI: 10.3390/plants11050581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Soursop leaves are a source of phytochemical compounds, such as phenolic acids, flavonoids, hydrolyzable tannins, and acetogenins. These compounds can have several types of biological activities. Lactic acid bacteria can uptake phenolic compounds present in plants or fruits. The aim of the present work was to investigate the in vitro effect of hexane, acetone, methanolic, and aqueous extracts of soursop leaves (Annona muricata L.) on the growth, motility, and biofilm formation of Lactobacillus casei, and to determine compounds related to growth. The minimum concentration promoting growth, motility (swimming, swarming, and twitching), and biofilm-forming capacity (crystal violet) were evaluated. The results showed the growth-promoting capacity of acetone and aqueous extracts at low doses 25-50 mg/L, and an inhibition in the four extracts at higher doses of 100 mg/L. The L. casei growth is related to ellagic acid, quercetin rhamnoside, kaempferol dihexoside, quercetin hexoside, secoisolariciresinol, and kaempferol hexoside-rhamnoside. Hexane extract increased the three types of motility, while aqueous maintained swimming and twitching motility similar to control. The four extracts inhibited the biofilm formation capacity.
Collapse
Affiliation(s)
- Nimcy Noemí Meza-Gutiérrez
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Km 9 Carretera Tepic-Compostela, Xalisco C.P. 63180, Nayarit, Mexico; (N.N.M.-G.); (R.B.-M.)
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Colonia Centro, Tepic C.P. 63000, Nayarit, Mexico;
| | - Paola Magallón-Servín
- Centro de Investigaciones Biológicas del Noroeste, Km 1 Carretera a San Juan de La Costa “El Comitan”, La Paz C.P. 23205, Baja California Sur, Mexico;
- Bashan Institure of Sciences, 1730 Post Oak Ct, Auburn, AL 36830, USA
| | - Rosendo Balois-Morales
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Km 9 Carretera Tepic-Compostela, Xalisco C.P. 63180, Nayarit, Mexico; (N.N.M.-G.); (R.B.-M.)
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Colonia Centro, Tepic C.P. 63000, Nayarit, Mexico;
| | - Iza Fernanda Pérez-Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas S/N, Querétaro C.P. 76010, Querétaro, Mexico;
| | - Graciela Guadalupe López-Guzmán
- Unidad Académica de Agricultura, Universidad Autónoma de Nayarit, Km 9 Carretera Tepic-Compostela, Xalisco C.P. 63780, Nayarit, Mexico;
| | - Guillermo Berumen-Varela
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Colonia Centro, Tepic C.P. 63000, Nayarit, Mexico;
| | - Pedro Ulises Bautista-Rosales
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Km 9 Carretera Tepic-Compostela, Xalisco C.P. 63180, Nayarit, Mexico; (N.N.M.-G.); (R.B.-M.)
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Colonia Centro, Tepic C.P. 63000, Nayarit, Mexico;
| |
Collapse
|
12
|
Yahya M, Ginting B, Saidi N. In-Vitro Screenings for Biological and Antioxidant Activities of Water Extract from Theobroma cacao L. Pod Husk: Potential Utilization in Foods. Molecules 2021; 26:6915. [PMID: 34834006 PMCID: PMC8618026 DOI: 10.3390/molecules26226915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/13/2023] Open
Abstract
Increasing production of cocoa (Theobroma cacao L.) leads to a higher environmental burden due to its solid waste generation. Cocoa pod husk, one of the major solid wastes of cocoa production, contains rich bioactive compounds unveiling its valorization potential. With that in mind, our research aimed to explore the biological and antioxidant activities of aqueous extracts from cocoa pod husks. In this present work, cocoa pod husk was extracted using water and subsequentially partitioned using n-hexane, ethyl acetate, and methanol. The antimicrobial investigation revealed that the ethyl acetate solubles were active against the Staphylococcus aureus, Escherichia coli, and Candida albicans, where at a 20% w/v concentration, the inhibition diameters were 6.62 ± 0.10, 6.52 ± 0.02, and 11.72 ± 0.36 mm, respectively. The extracts were found non-toxic proven by brine shrimp lethality tests against Artemia salina with LC50 scores ranging from 74.1 to 19,054.6 μg/mL. The total phenolic content and total flavonoid content were obtained in the range of 47.44 to 570.44 mg/g GAE and 1.96 to 4.34 mg/g QE, respectively. Antioxidant activities of the obtained extracts were revealed by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay with EC50 reached as low as 9.61 μg/mL by the ethyl acetate soluble. Phytochemical screening based on gas chromatography-mass spectroscopy analysis on the sample with the highest antioxidant activities revealed the dominant presence of three phytosterols, namely gamma-sitosterol, stigmasterol, and campesterol.
Collapse
Affiliation(s)
- Mustanir Yahya
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (B.G.); (N.S.)
| | | | | |
Collapse
|
13
|
Lee CH, Lee TH, Ong PY, Wong SL, Hamdan N, Elgharbawy AA, Azmi NA. Integrated ultrasound-mechanical stirrer technique for extraction of total alkaloid content from Annona muricata. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|