1
|
Suthar S, Joshi D, Patel H, Patel D, Kikani BA. Optimization and purification of a novel calcium-independent thermostable, α-amylase produced by Bacillus licheniformis UDS-5. World J Microbiol Biotechnol 2024; 40:385. [PMID: 39557691 DOI: 10.1007/s11274-024-04188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
Microbial amylases should essentially remain active at higher temperatures, and in the alkaline pH and a range of surfactants to be suitable as detergent additives. In the present study, a thermophilic amylase producing bacterium, Bacillus licheniformis UDS-5 was isolated from Unai hot water spring in Gujarat, India. It was identified as a potent amylase producer during starch plate-based screening process. Therefore, the physicochemical parameters influencing amylase production were optimized using Plackett-Burman design and Central Composite Design. The amylase was purified through ammonium sulfate precipitation, size exclusion and ion exchange chromatography, achieving the purification fold and yield to be 9.2 and 40.6%, respectively. The enzyme displayed robust stability and activity across a wide range of temperatures and pHs, with an increased half-life and reduced deactivation rate constant. The amylase exhibited optimal catalysis at 70 °C and pH 8. The kinetic studies revealed Km and Vmax values of 0.58 mg/mL and 2528 μmol/mL/min, respectively. Besides, the purified amylase displayed stability in the presence of various metal ions, surfactants, and chelators suggesting its potential for industrial applications, particularly in the detergent industry. Moreover, detergent application studies demonstrated its efficacy in enhancing washing performance. A comparative profile on washing efficiency of the studied amylase and the commercial amylase with various detergents pointed towards its possible future use as a detergent additive.
Collapse
Affiliation(s)
- Sadikhusain Suthar
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Disha Joshi
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Harsh Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Darshan Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Bhavtosh A Kikani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India.
| |
Collapse
|
2
|
Ugwuoji ET, Nwagu TNT, Ezeogu LI. Detergent-stable amylase production by Paenibacillus lactis strain OPSA3 isolated from soil; optimization by response surface methodology. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 39:e00808. [PMID: 37528864 PMCID: PMC10388169 DOI: 10.1016/j.btre.2023.e00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 08/03/2023]
Abstract
This study aimed to isolate thermostable, alkaliphilic, and detergent-tolerant amylase-producing bacteria. Pure isolates from environmental samples were screened on a starch-based medium (pH 11), and selected isolates were identified using cultural and molecular techniques. Product optimization studies were conducted, and secreted amylase was partially purified using 40% (w/v) saturation ammonium sulfate at 4 °C. The wash performance of concentrated amylase was analyzed. A novel isolate, Paenibacillus lactis OPSA3, was selected for further studies. The isolate produced amylase optimally when grown on banana peels and soybean extracts, which are agro-wastes. Optimization by Response surface Methodology resulted in a 2.1-fold increase in alkaliphilic amylase production. A 2.46-fold purification was achieved, with an enzyme activity yield of 79.53% and specific activity of 26.19 Umg-1. Wash performance analysis using the amylase supplemented with boiled commercial detergent (kiln®) showed good cleaning efficiency. The amylase has the potential for application as a component of green detergent.
Collapse
Affiliation(s)
- Emmanuel Tobechukwu Ugwuoji
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Tochukwu Nwamaka T. Nwagu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Lewis Iheanacho Ezeogu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
- UNESCO International Centre for Biotechnology, Nsukka, Nigeria
| |
Collapse
|
3
|
Bharwad K, Shekh S, Singh NK, Patel A, Joshi C. Heterologous expression and biochemical characterization of novel multifunctional thermostable α-amylase from hot-spring metagenome. Int J Biol Macromol 2023; 242:124810. [PMID: 37182622 DOI: 10.1016/j.ijbiomac.2023.124810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Hot-springs are regarded as the best source of industrially significant biocules and one of the unique locations for extremophiles. The α-amylase is one of the most important enzymes used in starch consuming industries, where the need of thermostability is paramount. In this study, the full metagenome sequences obtained from the soil of Tuwa hot-spring (Gujarat, India) were examined for the presence of several thermostable enzymes using bioinformatic techniques. The whole gene sequence for α-amylase was found from the metagenome. The α-amylase gene was amplified, cloned, and expressed in Escherichia coli and further characterized in vitro. The rm-α-amylase was found optimally active at 60 °C and at pH 6.0 and showed significantly high activity in 0.1 mM Co2+ as well as in other heavy metal ions without any effect on its thermostability. Apart from α-amylase activity the purified rm-α-amylase was also shown to hydrolyse agar, xylan, pectin, alginate and cellulose. To our knowledge, this is the first report of a new, multifunctional, thermostable amylase that was discovered from the hot-spring metagenomes. Owing to their multifunctionality, resilience towards high temperature and heavy metal ions, stability with solvents, additives and inhibitors, rm-α-amylase can be exploited for a variety of biotechnological applications.
Collapse
Affiliation(s)
- Krishna Bharwad
- Gujarat Biotechnology Research Centre, Gandhinagar 382011, India
| | - Satyamitra Shekh
- Gujarat Biotechnology Research Centre, Gandhinagar 382011, India
| | | | - Amrutlal Patel
- Gujarat Biotechnology Research Centre, Gandhinagar 382011, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar 382011, India.
| |
Collapse
|
4
|
Egbune EO, Avwioroko OJ, Anigboro AA, Aganbi E, Amata AI, Tonukari NJ. Characterization of a surfactant-stable α-amylase produced by solid-state fermentation of cassava (Manihot esculenta Crantz) tubers using Rhizopus oligosporus: Kinetics, thermal inactivation thermodynamics and potential application in laundry industries. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Ariaeenejad S, Zolfaghari B, Sadeghian Motahar SF, Kavousi K, Maleki M, Roy S, Hosseini Salekdeh G. Highly Efficient Computationally Derived Novel Metagenome α-Amylase With Robust Stability Under Extreme Denaturing Conditions. Front Microbiol 2021; 12:713125. [PMID: 34526977 PMCID: PMC8437397 DOI: 10.3389/fmicb.2021.713125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
α-Amylases are among the very critical enzymes used for different industrial purposes. Most α-amylases cannot accomplish the requirement of industrial conditions and easily lose their activity in harsh environments. In this study, a novel α-amylase named PersiAmy1 has been identified through the multistage in silico screening pipeline from the rumen metagenomic data. The long-term storage of PersiAmy1 in low and high temperatures demonstrated 82.13 and 71.01% activities after 36 days of incubation at 4 and 50°C, respectively. The stable α-amylase retained 61.09% of its activity after 180 min of incubation at 90°C and was highly stable in a broad pH range, showing 60.48 and 86.05% activities at pH 4.0 and pH 9.0 after 180 min of incubation, respectively. Also, the enzyme could resist the high-salinity condition and demonstrated 88.81% activity in the presence of 5 M NaCl. PersiAmy1 showed more than 74% activity in the presence of various metal ions. The addition of the detergents, surfactants, and organic solvents did not affect the α-amylase activity considerably. Substrate spectrum analysis showed that PersiAmy1 could act on a wide array of substrates. PersiAmy1 showed high stability in inhibitors and superb activity in downstream conditions, thus useful in detergent and baking industries. Investigating the applicability in detergent formulation, PersiAmy1 showed more than 69% activity after incubation with commercial detergents at different temperatures (30–50°C) and retained more than 56% activity after incubation with commercial detergents for 3 h at 10°C. Furthermore, the results of the wash performance analysis exhibited a good stain removal at 10°C. The power of PersiAmy1 in the bread industry revealed soft, chewable crumbs with improved volume and porosity compared with control. This study highlights the intense power of robust novel PersiAmy1 as a functional bio-additive in many industrial applications.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Behrouz Zolfaghari
- Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Seyedeh Fatemeh Sadeghian Motahar
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics, Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Morteza Maleki
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Swapnoneel Roy
- School of Computing, University of North Florida, Jacksonville, FL, United States
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization, Karaj, Iran.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
6
|
Soy S, Nigam VK, Sharma SR. Enhanced production and biochemical characterization of a thermostable amylase from thermophilic bacterium Geobacillus icigianus BITSNS038. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.2002549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Snehi Soy
- Department of Bio-Engineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Vinod Kumar Nigam
- Department of Bio-Engineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Shubha Rani Sharma
- Department of Bio-Engineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|