1
|
Subramani G, Manian R. Optimizing bio-vanillin synthesis from ferulic acid via Pediococcus acidilactici: A systematic approach to process enhancement and yield maximization. J Biotechnol 2024; 393:49-60. [PMID: 39025369 DOI: 10.1016/j.jbiotec.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
The use of lignocellulosic biomass to create natural flavor has drawn attention from researchers. A key flavoring ingredient that is frequently utilized in the food industry is vanillin. In this present study, Pediococcus acidilactici PA VIT effectively involved in the production of bio-vanillin by using Ferulic acid as an intermediate with a yield of 11.43 µg/mL. The bio-vanillin produced by Pediococcus acidilactici PA VIT was examined using FTIR, XRD, HPLC, and SEM techniques. These characterizations exhibited a unique fingerprinting signature like that of standard vanillin. Additionally, the one variable at a time method, placket Burmann method, and response surface approach, were employed to optimize bio-vanillin. Based on the central composite rotary design, the most important process factors were determined such as agitation speed, substrate concentration, and inoculum size. After optimization, bio-vanillin was found to have tenfold increase, with a maximum yield of 376.4 µg/mL obtained using the response surface approach. The kinetic study was performed to analyze rate of reaction and effect of metal ions in the production of bio-vanillin showing Km of 10.25, and Vmax of 1250 were required for the reaction. The metal ions that enhance the yield of bio-vanillin are Ca2+, k+, and Mg2+ and the metal ions that affects the yield of bio-vanillin are Pb+ and Cr+ were identified from the effect of metal ions in the bio-vanillin production.
Collapse
Affiliation(s)
- Gomathi Subramani
- Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Rameshpathy Manian
- Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
2
|
Do UT, Nguyen QT, Kim J, Luu QS, Park Y, Song M, Yang S, Choi J, Yun S, Kang DK, Lee Y. Tailored synthesis of pH-responsive biodegradable microcapsules incorporating gelatin, alginate, and hyaluronic acid for effective-controlled release. Int J Biol Macromol 2024; 270:132178. [PMID: 38735614 DOI: 10.1016/j.ijbiomac.2024.132178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
In response to escalating environmental concerns and the urgent need for sustainable drug delivery systems, this study introduces biodegradable pH-responsive microcapsules synthesized from a blend of gelatin, alginate, and hyaluronic acid. Employing the coacervation process, capsules were created with a spherical shape, multicore structure, and small sizes ranging from 10 to 20 μm, which exhibit outstanding vitamin E encapsulation efficiency. With substantial incorporation of hyaluronic acid, a pH-responsive component, the resulting microcapsules displayed noteworthy swelling behavior, facilitating proficient core ingredient release at pH 5.5 and 7.4. Notably, these capsules can effectively deliver active substances to the dermal layer under specific skin conditions, revealing promising applications in topical medications and cosmetics. Furthermore, the readily biodegradable nature of the designed capsules was demonstrated through Biochemical Oxygen Demand (BOD) testing, with over 80 % of microcapsules being degraded by microorganisms after one week of incubation. This research contributes to the development of responsive microcapsules and aligns with broader environmental initiatives, offering a promising pathway to mitigate the impact of microplastics while advancing various applications.
Collapse
Affiliation(s)
- Uyen Thi Do
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Quynh Thi Nguyen
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Jiwon Kim
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Quy Son Luu
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Yeeun Park
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Minji Song
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Seyoung Yang
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Jaehwa Choi
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Seokki Yun
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Dong-Ku Kang
- Department of Chemistry, Incheon National University, Incheon 22012, South Korea.
| | - Youngbok Lee
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea; Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea.
| |
Collapse
|
3
|
Martínková L, Grulich M, Pátek M, Křístková B, Winkler M. Bio-Based Valorization of Lignin-Derived Phenolic Compounds: A Review. Biomolecules 2023; 13:biom13050717. [PMID: 37238587 DOI: 10.3390/biom13050717] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Lignins are the most abundant biopolymers that consist of aromatic units. Lignins are obtained by fractionation of lignocellulose in the form of "technical lignins". The depolymerization (conversion) of lignin and the treatment of depolymerized lignin are challenging processes due to the complexity and resistance of lignins. Progress toward mild work-up of lignins has been discussed in numerous reviews. The next step in the valorization of lignin is the conversion of lignin-based monomers, which are limited in number, into a wider range of bulk and fine chemicals. These reactions may need chemicals, catalysts, solvents, or energy from fossil resources. This is counterintuitive to green, sustainable chemistry. Therefore, in this review, we focus on biocatalyzed reactions of lignin monomers, e.g., vanillin, vanillic acid, syringaldehyde, guaiacols, (iso)eugenol, ferulic acid, p-coumaric acid, and alkylphenols. For each monomer, its production from lignin or lignocellulose is summarized, and, mainly, its biotransformations that provide useful chemicals are discussed. The technological maturity of these processes is characterized based on, e.g., scale, volumetric productivities, or isolated yields. The biocatalyzed reactions are compared with their chemically catalyzed counterparts if the latter are available.
Collapse
Affiliation(s)
- Ludmila Martínková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Michal Grulich
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Barbora Křístková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Margit Winkler
- Institute of Molecular Biotechnology, Faculty of Technical Chemistry, Chemical and Process Engineering, Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
- Austrian Center of Industrial Biotechnology GmbH, Krenngasse 37, 8010 Graz, Austria
| |
Collapse
|
4
|
Mostafa HS, Hashem MM. Lactic acid bacteria as a tool for biovanillin production: A review. Biotechnol Bioeng 2023; 120:903-916. [PMID: 36601666 DOI: 10.1002/bit.28328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Vanilla is the most commonly used natural flavoring agent in industries like food, flavoring, medicine, and fragrance. Vanillin can be obtained naturally, chemically, or through a biotechnological process. However, the yield from vanilla pods is low and does not meet market demand, and the use of vanillin produced by chemical synthesis is restricted in the food and pharmaceutical industries. As a result, the biotechnological process is the most efficient and cost-effective method for producing vanillin with consumer-demanding properties while also supporting industrial applications. Toxin-free biovanillin production, based on renewable sources such as industrial wastes or by-products, is a promising approach. In addition, only natural-labeled vanillin is approved for use in the food industry. Accordingly, this review focuses on biovanillin production from lactic acid bacteria (LAB), which is generally recognized as safe (GRAS), and the cost-cutting efforts that are utilized to improve the efficiency of biotransformation of inexpensive and readily available sources. LABs can utilize agro-wastes rich in ferulic acid to produce ferulic acid, which is then employed in vanillin production via fermentation, and various efforts have been applied to enhance the vanillin titer. However, different designs, such as response surface methods, using immobilized cells or pure enzymes for the spontaneous release of vanillin, are strongly advised.
Collapse
Affiliation(s)
- Heba S Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Marwa M Hashem
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
The Disposition of Bioactive Compounds from Fruit Waste, Their Extraction, and Analysis Using Novel Technologies: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fruit waste contains several bioactive components such as polyphenols, polysaccharides, and numerous other phytochemicals, including pigments. Furthermore, new financial opportunities are created by using fruit ‘leftovers’ as a basis for bioactivities that may serve as new foods or food ingredients, strengthening the circular economy’s properties. From a technical standpoint, organic phenolic substances have become more appealing to industry, in addition to their application as nutritional supplements or functional meals. Several extraction methods for recovering phenolic compounds from fruit waste have already been published, most of which involve using different organic solvents. However, there is a growing demand for eco-friendly and sustainable techniques that result in phenolic-rich extracts with little ecological impact. Utilizing these new and advanced green extraction techniques will reduce the global crisis caused by fruit waste management. Using modern techniques, fruit residue is degraded to sub-zero scales, yielding bio-based commodities such as bioactive elements. This review highlights the most favorable and creative methods of separating bioactive materials from fruit residue. Extraction techniques based on environmentally friendly technologies such as bioreactors, enzyme-assisted extraction, ultrasound-assisted extraction, and their combination are specifically covered.
Collapse
|
6
|
Biotransformation of Agricultural By-Products into Biovanillin through Solid-State Fermentation (SSF) and Optimization of Different Parameters Using Response Surface Methodology (RSM). FERMENTATION 2022. [DOI: 10.3390/fermentation8050206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vanillin is a flavorful and aromatic secondary metabolite found in vanilla plants. Natural vanillin, produced through processed vanilla beans accounts for scarcely 0.2% of industrial requirements. Vanillin produced via chemical methods and microbial fermentation fills the remaining gap. Among naturally available precursors for biovanillin synthesis, ferulic acid is widely used because of its structural similarity and abundant availability. Herein, various agricultural lignocellulosic by-products (sugarcane bagasse, wheat straw, rice straw, rice bran, and corn cob) were scrutinized for their ferulic acid content, and their biotransformation into biovanillin was examined by solid-state fermentation (SSF). Then, different physicochemical parameters, i.e., moisture content, pH, temperature, inoculum size, and incubation days, were optimized to achieve a high yield of biovanillin using central composite design (CCD) of response surface methodology (RSM). Among agricultural by-products tested, sugarcane bagasse produced 0.029 g/100 g of biovanillin using Enterobacter hormaechei through SSF. After optimization, the highest concentration of biovanillin (0.476 g/100 g) was achieved at a moisture content of 70%, temperature of 37.5 °C, pH 7.5, inoculum size of 4 mL and incubation time of 48 h. The F-value of 6.10 and p-value of 0.002 evidenced the ultimate significance of the model. The significance of the constructed model was supported by the 91.73% coefficient of determination (R2), indicating that the effects of moisture, pH, and temperature were significant. HPLC and FTIR confirmed the sample identification and purity (was reported to be 98.3% pure). In conclusion, sugarcane bagasse appears to be a cost-effective substrate choice for large-scale biovanillin production.
Collapse
|
7
|
Mohd Zaini H, Roslan J, Saallah S, Munsu E, Sulaiman NS, Pindi W. Banana peels as a bioactive ingredient and its potential application in the food industry. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
8
|
Valorization of Fruit Peels into Biovanillin and Statistical Optimization of Process Using Enterobacter hormaechei through Solid-State Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Vanillin is a secondary metabolite of plants and the major organoleptic aroma component of natural vanilla. Nowadays, the chemical synthesis method used for vanillin production has been rejected by the United States and European legislation, while plant-derived vanillin is expensive. The current study demonstrates vanillin production via solid-state fermentation (SSF) by Enterobacter hormaechei using different ferulic acid-rich fruit peels as substrates. From different ferulic acid-rich fruit peels (pomegranate, banana, and orange) screened Punica granatum (pomegranate) peels yielded maximum biovanillin (0.09 mg/g) after 24 h. Different bioprocess parameters, including moisture content, inoculum size, pH, and temperature, were optimized using central composite design (CCD) of the response surface methodology (RSM). The maximum biovanillin yield (0.462 mg/g) from Punica granatum peels was achieved at 60% moisture content, 2 mL inoculum size, 6.5 pH, and 32 °C temperature. An F-value of 12.94 and a p-value of 0.00 were recorded by the variance analysis indicated the proposed model’s significance. The coefficient of determination (R2) confirmed the model’s goodness of fit, having a value of 91.89%, which indicated the model’s accuracy. The optimally produced biovanillin was extracted and confirmed using FTIR. Further purity analysis was done by HPLC and the biovanillin was reported to be 99.2% pure. The results demonstrated that microbial conversion of ferulic acid-rich fruit peels to biovanillin offers a cost-effective approach for the industrial production of biovanillin.
Collapse
|