1
|
Feng S, Ngo HH, Guo W, Khan MA, Zhang S, Luo G, Liu Y, An D, Zhang X. Fruit peel crude enzymes for enhancement of biohydrogen production from synthetic swine wastewater by improving biohydrogen-formation processes of dark fermentation. BIORESOURCE TECHNOLOGY 2023; 372:128670. [PMID: 36706821 DOI: 10.1016/j.biortech.2023.128670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Biohydrogen is a promising clean fuel but with a low yield. This study aims to enhance biohydrogen production from synthetic swine wastewater by employing crude enzymes obtained from different fruit peels (orange, mandarin, and banana) to improve the biohydrogen-formation processes of dark fermentation. Results indicated that dosing with crude enzymes affected volatile fatty acids (VFAs) and biogas composition insignificantly, while increased biohydrogen yield from 1.62 ± 0.00 (blank) to 1.90 ± 0.08 (orange peel), 2.01 ± 0.00 (mandarin peel), and 1.96 ± 0.01 (banana peel) mol H2/mol glucose, respectively. Banana peel crude enzyme was the most effective additive, with 1 g/L protein improving 97.41 ± 3.72 % of biohydrogen yield. The crude enzymes wielded less influence on acetic acid and butyric acid pathways but enhanced other biohydrogen production pathways. These observations demonstrated that fruit peel-based crude enzymes as additives are advantageous to improving biohydrogen yield towards higher biohydrogen production.
Collapse
Affiliation(s)
- Siran Feng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | | | - Shicheng Zhang
- Department of Environmental Science and Engineering, Fudan University, 2205, Shanghai 200438, China
| | - Gang Luo
- Department of Environmental Science and Engineering, Fudan University, 2205, Shanghai 200438, China
| | - Yi Liu
- Department of Environmental Science and Engineering, Fudan University, 2205, Shanghai 200438, China
| | - Ding An
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090 Harbin, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
2
|
Potential applications of peroxidase from Luffa acutangula in biotransformation. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Isolation, purification and characterization of peroxidase from Raphanus sativus and its applications in biotransformation of cresols. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|